О КОМПАНИИ
ООО "ВиАТорг"
г. Белгород
ПРОДУКЦИЯ
Cосуды Дьюара криобиологические
КОНТАКТЫ
Связь с нами

ПРОДУКЦИЯ
Cосуды криобиологические (Сосуды Дьюара)



КОНТАКТЫ
ООО "ВиАТорг", г. Белгород
Компания "ВиАТорг" официальный представитель Харьковского завода транспортного оборудования в России поставляет криобиологические сосуды (Сосуды Дьюара) по России и странам СНГ.
У нас Вы можете купить Сосуды Дьюара недорого

E-mail:viatorg@yandex.ru

СТАТЬИ
Биотехнологии, принципы и применение


Партнеры
Объявления


Популярное
Интересные факты криобиологии
Другие полимеры, образуемые микроорганизмами
Все описанные до сих пор биополимеры полностью синтезиру­ются определенными микроорганизмами в процессе роста на том или ином источнике углерода. Существуют и иные способы получения новых полимерных м ...

Интерферон, Гормон роста, Вакцины
ИнтерферонИнтерфероны — это группа белков, открытых в ходе изучения веществ, вырабатываемых клетками, зараженными вирусами. Они индуцируют как локальные, так и системные противови­русные реакции ...

Пренатальная диагностика наследственных болезней
Многие методы молекулярной генетики начинают широко применяться в пренатальной диагностике наследственных болезней,, например гемоглобинопатии. Так, в 1978 г. Кен и Доузи раз­работали метод диагностик ...

Основные требования к оборудованию
Прямоугольная выровненная поверхность, на которой предпо­лагается выращивать растения, должна иметь двухсторонний уклон. По всей длине самой низкой ее части проходит канавка-ловушка. Ее выстилают непр ...

Принцип «псевдоожиженного слоя»
Данная технология, введенная в практику в 1980 г., во многих отношениях представляет собой сочетание систем перколяци-онных фильтров и активного ила. Она весьма экономична бла­годаря использованию выс ...

Масличные растения
Растительные масла могут быть получены из самых разнообраз­ных растений. Помимо хорошо известных нам подсолнечников, пальм, кокосовых орехов, оливок и арахиса для этой цели ис­пользуются и более экзот ...

Хлеб и другие продукты
В Англии большинство хлебопродуктов производится по техно­логии Chorleywood Bread Process, но в других странах исполь­зуется много других технологий хлебопечения. Для производст­ва хлеба до сих пор пр ...

Консервированные овощи
Как и в случае многих других разновидностей пищевого сырья, необходимость сохранения овощей для употребления их в тече­ние всего года привела к созданию ряда новых пищевых про­дуктов. До того как в пр ...

Иммуногистохимия
Меченые антитела могут использоваться для изучения распре­деления антигенов в срезах тканей с помощью как светового, так и электронного микроскопа. При работе по общепринятому «сэндвич-методу» на срез ...

Бесклеточные системы
Одна из привлекательных возможностей, предоставляемых тех­нологией «солнечной энергетики», заключается в использовании целых организмов как биологических катализаторов при произ­водстве аммиака и водо ...

Улучшение генетически обусловленных свойств
При оптимизации любого промышленного процесса, протекаю­щего с участием живых организмов, основные усилия бывают направлены на улучшение их генетически обусловленных свойств. Традиционно для повышения ...

Биосинтез полисахаридов
Хотя у некоторых бактерий синтез полисахаридов (например, декстранов) осуществляется вне клетки, в большинстве случа­ев полисахариды синтезируются внутри нее, а для этого необ­ходимо, чтобы соответств ...

Будущий вклад биотехнологии в химическую промышленность
Источником сырья для различных отраслей химической промыш­ленности в обозримом будущем будут нефть и ее производные. Получаемые из них с малыми затратами продукты вряд ли по­требуется производить при ...

Применение сосудов Дьюара в сельском хозяйстве
Искусственное осеменение коров и телок. Инструкция.   Министерство сельского хозяйства РФ   Увеличение производства продукции животноводства зависит от уровня организации воспроизводства сельско ...

Исторические перспективы
До тех пор, пока всеобъемлющий термин «биотехнология» не стал общепринятым, для обозначения наиболее тесно связанных с биологией разнообразных технологий использовали такие на­звания, как прикладная м ...

Регенерация растений из протопластов
Шеферд и Тоттен (Shephard, Totten, 1977 г.) в опытах с кар­тофелем, у которого регенерация растений из культуры тканей затруднена, разработали метод, позволяющий достаточно успеш­но регенерировать рас ...

Недостатки метода бактериального выщелачивания
В предыдущих разделах в общих чертах говорилось о практи­ческом использовании бактериального выщелачивания в настоя­щее время и в перспективе. Однако немедленное практическое применение бактериального ...

Энергетика
В ходе эволюции в биологических системах сформировался ряд весьма совершенных механизмов превращения энергии. На рис. 1.3 представлены основные известные их типы, часть которы хиспользуется разными сп ...

Плазмиды
Многие свойства бактерий, интересные с точки зрения биотех­нологии, кодируются плазмидами. Плазмиды — это кольцевые молекулы ДНК, которые стабильно передаются потомству бак­териальных клеток нез ...

Инокуляция эндофитом
Выделение спор эндофита из почвы Почву, содержащую тонкие корешки, замачивают в воде и раз­мешивают до разделения почвенных частиц, а затем процежи­вают через сито с отверстиями диаметром 500—60 ...


Антибиотики и стероиды
Биотехнологии » Химия и биотехнология


Антибиотики (группа веществ микробного происхождения) играют большую роль в нашей жизни. В медицине и ветерина­рии они с успехом применяются как противомикробные и про­тивоопухолевые препараты; с их помощью контролируется рост растений и ведется борьба с болезнями. Все антибиотики были выделены в ходе систематического скрининга микроорганизмов; число их было существенно увеличено путем химической моди­фикации, цель которой состоит в
1) расширении спектра дейст­вия и повышении эффективности;
2) снижении токсичности и устранении нежелательных побочных эффектов;
3) создании аналогов, устойчивых к разрушению микробами и обладающих поэтому большим временем полужизни;
4) усовершенствовании способов их введения.
Со времени открытия и описания первых антибиотиков полу­чили путевку в жизнь целое поколение полусинтетических пеии-циллинов, цефалоспоринов, аминогликозидов, тетрациклинов, рифамицинов, макролидов и линкозаминидов. Эти соединения очень сложны, и метод полного химического синтеза не может конкурировать с их производством методом ферментации. По­скольку микробы могут разрушать антибиотики, возникла мысль модифицировать природные антибиотики ферментами микроорганизмов (вспомним о превращениях стероидов), но лишь немногие из таких веществ оказались экономически приемлемыми (6-аминопенициллановая кислота, 6-диметилтет-рациклины). Существует три основных способа получения но­вых антибиотиков.
1. Прямая ферментация. В этом случае используются" обра­зующие антибиотик микроорганизмы, которые синтезируют но­вые биологически активные соединения в присутствии подходящих предшественников или ингибиторов метаболизма. Так, Penicillium chrysogenum не только синтезирует пенициллин, но и включает фенилуксусную кислоту в бензилпенициллин, а дру­гие предшественники — в аналоги пенициллина. Этот принцип находит широкое применение, например, при получении новых блеомицинов путем добавления аминов к культуре S. verticillub и новых актиномицинов — путем добавления 4-метилпролина к среде для выращивания S. parvulus. При подавлении синтеза антибиотиков также иногда образуются полезные вещества. Так, при подавлении процесса присоединения хлора S. aureofa-ciens образует тетрациклин, а не хлортетрациклин. Если в сре­ду ферментации добавить L-метионин, то ингибируются реакции метилирования и синтезируется 6-деметил-7-хлортетрациклин (табл. 4.2).
 
Таблица 4.2
 
ингибируются реакции метилирования
2. Мутанты организмов-продуцентов иногда образуют био­логически активные промежуточные продукты какого-то опре­деленного пути биосинтеза антибиотиков либо соединения, ко­торые могут оказаться полезными как предшественники при создании новых аналогов. «Блокированные» мутанты этого ти­па не способны образовать нужный антибиотик, если в среде отсутствует метаболитический предшественник, который в нор­ме образуется при участии фермента, действующего вслед заблокированным звеном метаболизма. Поскольку ферменты,, участвующие во вторичном метаболизме, нередко обладают от­носительно низкой субстратной специфичностью, аналоги пред­шественников антибиотиков могут быть относительно легко превращены мутантом в аналоги самого антибиотика в ходе процесса, известного как мутационный биосинтез, или мутасин-тез. Nocardia medlterranel синтезирует около двадцати разных рифамицинов (рис. 4.8). Путем добавления барбитала ход фер­ментации и как следствие спектр образуемых антибиотиков существенно меняется. Мутанты этого организма, у которого подавлена способность к ацилированию, образуют предшествен­ник рифамицина В — рифамицин SV, который служит исход­ным веществом для получения многих синтетических рифами-цинов (например, рифампицина, препарата для лечения туберкулеза, который действует и на возбудителя проказы). Другой мутант, с блокированным метилированием, синтезирует 27-деметилрифамицин SV, ценный субстрат для синтезов, кото­рый исключительно сложно получить химическими методами.
 
Структура рифамицина
Рис. 4.8. Структура рифамицина.
 
3. Особенно успешно модификация антибиотиков микроба­ми идет в следующих двух процессах.
а. При ферментативном гидролизе пенициллина с образо­ванием 6-аминОпенициллановой кислоты (6-АПК, рис. 4.9), ко­торая является ценным исходным продуктом при производстве некоторых полусинтетических, важных для медицины аналогов пенициллина. В промышленности 6-АГЩ, ядро молекулы пени-.циллина, получают путем гидролиза пенициллина или бензил-пенициллина при участии штаммов, с высоким выходом обра­зующих в ходе ферментации пенициллинацилазу; для этой же цели используют также иммобилизованную пенициллинацилазу. Исходя из типа пенициллина, который ацилазы предпочти­тельно гидролизуют, их подразделяют на группы. Некоторые из них способны катализировать и обратные реакции.
Гидролиз пенициллина
 
Рис. 4.9. Гидролиз пенициллина с образованием 6-АПК (ядра молекулы пени­циллина) или пенициллиновой кислоты.
 
На основе 6- АПК было получено более 40000 полусинтетических пеницил-.линов. В некоторых случаях не было необходимости выделять 6-АПК: примером может быть превращение бензилпенициллина в ампициллин. Гидролиз бензилпенициллина осуществляют при участии мутанта Kluyvera citrophila, после чего в ферментер
вносят мутант Pseudomonas melanogenum и метиловый эфир-DL-фенилглицина. Условия процесса изменяют таким образом, чтобы они способствовали образованию ампициллина (рис. 4.10). В роли катализатора выступает ацилаза, образуемая вторым мутантным организмом, которая не способна в этих условиях гидролизовать или синтезировать бензилпенициллин. В ходе этого двухстадийного процесса образуется только ампициллин; [D (—) -а-аминобензилпенициллин].
 Синтез ампициллина
 
Рис. 4.10. Синтез ампициллина.

б. В клинике широко применяются аминогликозидные анти­биотики (стрептомицин, неомицин, канамицин, гентамицин). Бактерии, способные их инактивировать, были выделены не только от больных, но и как самостоятельные, образующие ан­тибиотики штаммы. Их ферментативная активность может быть-частью механизма детоксикации, при помощи которого организ­мы-продуценты защищают себя от неблагоприятного воздейст­вия образуемых ими же веществ. К числу модификаций, проис­ходящих при инактивации антибиотиков, относятся N-ацетилирование, О-фосфорилирование, О-аденилирование и О-нуклеотидилирование. Установление механизма модификацию позволило планировать и осуществлять химический синтез но­вых аналогов, устойчивых к такой инактивации.
Инактивация антибиотиков по другому механизму, включая гидролиз, гидроксилирование, эпоксидирование, сульфоокисле-ние, фосфорилирование или восстановление, обычно приводит к образованию или полностью, или частично неактивных про­изводных. Их изучение позволит синтезировать новые аналоги, выявить те участки молекул, которые ответственны за антибио­тическую активность, а также создать рациональные основы «конструирования» антибиотиков и усовершенствования произ­водства.
Пенициллиназы (Я-лактамазы) гидролизуют Я-лактамное кольцо молекулы субстрата и являются основой устойчивости болезнетворных бактерий к пенициллинам и цефалоспоринам. В результате гидролиза амидной связи кольца образуется пе-нициллиновая кислота (рис. 4.9), которая полностью лишена антимикробной активности. Эти ферменты синтезируются мно­гими бактериями; они могут различаться по строению и специфичности. Глубокое изучение механизмов их действия позволи­ло наладить производство устойчивых аналогов антибиотиков, таких как ампициллин и карбенициллин, а также найти при­родные ингибиторы лактамазы — клавулановую и оливановую кислоты. Я-Лактамазы используются для оценки количества пенициллинов в пищевых продуктах и биологическом сырье, а также для инактивации пенициллина в молоке, что предот­вращает аллергические реакции у его потребителей.
В некоторых случаях получить полезные предшественники с помощью микробов не удается. Так, при выработке цефало-спорина в основном образуется цефалоспорин С, который при­ходится затем химическим методом гидролизовать до 7-амино-цефалоспорановой кислоты (рис. 4.11) и уже ее использовать как субстрат для получения новых полусинтетических цефалоспоринов.
Гидролиз цефалоспорина С.

Рис. 4.11. Гидролиз цефалоспорина С.
 
Способность микроорганизмов выступать в роли химических катализаторов впервые удалось использовать в полной мере для синтеза промышленно важных стероидов. В последние тридцать лет субстратная и стереоспецифичность ферментов нашла ши­рокое применение в производстве стероидов при осуществлении разнообразных реакций: гидроксилирования, дегидроксилирова-ния, эпоксидирования, окисления, восстановления, гидрогениза­ции, дегидрогенизации, этерификации, гидролиза эфиров и изо­меризации. Целью всеобъемлющих исследований в этой обла­сти было осуществление специфических структурных пере­строек стероидов при мягких условиях. Специфич­ность таких реакций определяется либо выбором оп­ределенного вида микроорганизмов, либо химической модифи­кацией субстрата, стереохимически исключающей другие реак­ции. Понимание зависимости между строением молекул субстрата и характером его перестройки, осуществляемой мик­роорганизмами, позволило сформулировать требования для каждой конкретной реакции, например для гидроксилирования. В определении скорости и направления реакции главную роль, как выяснилось, играют положение и ориентация замещающих групп в молекулах стероидов. История развития методов мик­робиологического преобразования стероидов представляет собой прекрасный пример сочетания химического подхода со специ­фичностью и разнообразием биологических систем. Кроме того, на этой основе может быть осуществлен синтез новых стероидов, обладающих лучшими фармакологическими свойствами.



Другие новости по теме:

  • Антибиотики
  • Мутагенез и отбор
  • Ауксотрофные мутанты
  • Первый запатентованный процесс микробной трансформации стероидов
  • Производство аминокислот при помощи бактерий и их мутантов


  •  (голосов: 0)

    ООО "ВиАТорг" © 2009
    Rambler's Top100 Рейтинг@Mail.ru