Криобиологические сосуды > Химия и биотехнология > Виннокаменная кислота

Виннокаменная кислота


Виннокаменная кислота является обычным побочным про­дуктом виноделия. Однако ее можно получать и путем микроб-уной трансформации 5-оксоглюконовой кислоты. Штаммы, способные превращать глюкозу в 5-оксоглюконат через глюконат, могут путем дальнейшей ферментации образовывать тартрат. Для этой цели обычно используют мутанты Acetobacter и Glu-conobacter. Виннокаменную кислоту можно вырабатывать так­же из транс- или гис-эпоксиянтарной кислоты. Соли ее (тартраты) находят широкое применение в пищевой промышленности, но методы биотехнологии в ее производстве обычно не исполь­зуются.
Яблочную кислоту, которая применяется в качестве подкис-лителя в пищевой промышленности, можно получать из фума-ровой либо путем ферментации при участии видов Paracolo-bactrum, либо с помощью иммобилизованной фумаразы. Описа­ны также способы ее получения из н-парафинов при помощи дрожжей и из этанола при участии Schizophyllum commune.
Итаконовую кислоту, идущую на производство пластмасс и красителей, получают с высоким выходом путем ферментации глюкозы с участием грибов из рода Aspergillus. Совсем недавно на основе биотехнологии из углеводных субстратов, а также С12-н-парафинов при участии Candida hydrocarbofurmarica по­лучали 2-оксоглутаровую кислоту, но на смену этому способу пришло каталитическое окисление бензола.
Большинство органических кислот, вырабатываемых с по­мощью микробов, является продуктом переработки пищевого сырья; исключение составляют кислоты, производимые из н-па­рафинов. О возможности использования других видов углеводо­родного сырья как потенциального источника более ценных органических соединений говорится уже давно, но лишь немно­гие процессы используются сегодня для получения промышлен­ной продукции. Так, из нафталина при помощи микробов вы­рабатывают салициловую кислоту и другие окисленные его производные. Об этом в последние двадцать лет писали не раз (Cain, 1980; Tangnu, Ghose, 1980, 1981).
К числу бактерий, способных вырабатывать салициловую кислоту (рис. 4.4) при росте в средах с нафталином, принадле­жат многие виды Pseudomonas, Achromobacter и Corynebacte-rium. Запатентован способ выработки о-гидроксибензальпиро-виноградной кислоты и 1,2-дигидро-1,2-дигидроксинафталина при участии видов Nocardia. Большинство диких штаммов бак­терий, расщепляющих нафталин, при хорошей аэрации в про­стых солевых средах редко образует салицилат в концентрации, превышающей 1%, но путем изменения сред и отбора подходя­щих штаммов могут быть получены и более высокие выходы.
 
Междисциплинарная приро­да биотехнологии.
 
Рис. 4.4. Микробиологическая конверсия нафталина в полезные органические вещества.
 
Одним из основных факторов, влияющих на выход, является доступность субстрата, и накопление салицилата происходит лишь при постоянном присутствии нафталина: это угнетает дальнейшие окислительные превращения. Механизм деградации зависит от относительной концентрации нафталина и салицило­вой кислоты. Сложность заключается в том, что полиаромати­ческий нафталин плохо растворим в воде, в среде ферментации он обычно присутствует в виде тонкой взвеси. Добавление эмульгаторов типа Span 80, Span 20, лецитина, кефалина и дру­гих поливиниловых спиртов существенно увеличивает накопления салицилата, так как при этом повышается доступность субстрата. Обычно используют чистый нафталин, но салицилат можно получать и из неочищенных нафтафракций. Примеси (алкилнафталины, тиофен, бензотиофен и крезолы) этому не мешают.
В ходе ферментации рН быстро падает, так что нужно ис­пользовать сильно забуференные среды с высокой концентраци­ей фосфата либо добавлять мочевину или углекислый кальций. Для максимального накопления салицилата необходимы ионы различных металлов. Сообщалось, что выход можно еще более повысить, если внести в среду особые добавки: органические и неорганические производные алюминия или бора, пантотеновую кислоту и ряд других веществ. Ферментация регулируется на­капливающимся продуктом, а не субстратом; удаление салици-лата из среды снимает его ингибирующее влияние на рост и приводит к дальнейшему образованию салициловой кислоты. Продукт отделяют двумя способами. Для этого используют ани-онообменную смолу (типа амберлит IRA-400), которую либо вносят прямо в среду, либо помещают в диализный мешок; при этом салициловая кислота адсорбируется смолой. Культураль-ную жидкость можно пропускать через колонку с ионообменной смолой, смонтированную около ферментера. При этом концент­рация продукта в ферментере все время поддерживается на низком уровне, что многократно увеличивает выход (до 6 раз); возрастает полнота извлечения продукта. Альтернативный спо­соб удаления продукта — диализная ферментация. Применение этого процесса на небольшой опытной установке позволило уве­личить выход салицилата от 10 до 206 г/л. Преимущество ме­тода состоит в том, что удается избежать неблагоприятного воздействия ионообменных смол; с другой стороны, приходится использовать большие объемы жидкой среды, что снижает кон­центрацию в ней продукта. Применяются и другие, более тра­диционные способы отделения продукта, например экстракция растворителем. Производство салицилата путем ферментации также страдает от фаговой инфекции, и приходится вести рабо­ту по селекции устойчивых к фагам мутантов.
Показано, что деградация нафталина и салицилата микро­организмами нескольких родов детерминируется плазмидами. Так, за превращение нафталина в салицилат ответственна плаз-мида NAH: она несет гены ферментов, осуществляющих этот процесс (нафталиноксигеназы, 1,2-диоксинафталиноксигеназы, дегидрогеназы салицилового альдегида). Таким образом, у мно­гих микроорганизмов, использующих нафталин, генетическая информация для осуществления этого процесса закодирована в плазмиде, но это бывает не всегда. В ходе использования та­ких плазмид создаются предпосылки для встраивания соответ­ствующего генетического материала в хромосомы клеток хо­зяина, что превращает штаммы в продуценты салицилата. Способность использовать или окислять нафталин обычно за­крепляется при росте на нафталине, салицилате или его анало­гах, таких как бензоат или аминобензоат. Описаны интересные процессы сопутствующего окисления: мутантные штаммы Pseu-domonas putida, выращенные на среде с глюкозой, которая слу­жит единственным источником углерода и энергии, способны окислять нафталин до дигидрокси-1,2-дигидронафталина и 1,2-гидроксинафталина на основе индукции ферментов нафталином или другими соединениями-индукторами, происходящей после-завершения роста. Первое из этих соединений после кислотной-дегидратации превращается в а-нафтол — важное моноокислен-ное производное нафталина (рис. 4.4).