О КОМПАНИИ
ООО "ВиАТорг"
г. Белгород
ПРОДУКЦИЯ
Cосуды Дьюара криобиологические
КОНТАКТЫ
Связь с нами

ПРОДУКЦИЯ
Cосуды криобиологические (Сосуды Дьюара)



КОНТАКТЫ
ООО "ВиАТорг", г. Белгород
Компания "ВиАТорг" официальный представитель Харьковского завода транспортного оборудования в России поставляет криобиологические сосуды (Сосуды Дьюара) по России и странам СНГ.
У нас Вы можете купить Сосуды Дьюара недорого

E-mail:viatorg@yandex.ru

СТАТЬИ
Биотехнологии, принципы и применение


Партнеры
Объявления


Популярное
Интересные факты криобиологии
Роль генетических факторов в патологии
Примером генетически обусловленного заболевания может быть и диабет, но механизм наследования и молекулярная основа его остаются неясными. У пациентов группы 1, страдающих юношеским диабетом, наблюдае ...

Молочные продукты
В пищевой промышленности ферментацию применяют главным образом для получения молочных продуктов. В сквашивании мо­лока обычно принимают участие стрептококки и молочнокислые бактерии; лактоза при этом ...

Антибиотики и стероиды
Антибиотики (группа веществ микробного происхождения) играют большую роль в нашей жизни. В медицине и ветерина­рии они с успехом применяются как противомикробные и про­тивоопухолевые препараты; с их ...

Мутагенез и отбор
В прошлом для увеличения продуктивности штаммов обычно использовали мутагенез и отбор: именно таким путем удалось повысить выход антибиотиков, синтезируемых грибами и акти-номицетами. Рис. 7.1 иллюстр ...

Глюкозоизомераза
«Королевой» иммобилизованных ферментов в промышленности можно считать глюкозоизомеразу, которая катализирует пре­вращение глюкозы во фруктозу. Коммерческие препараты ее известны под фирменным название ...

Сметана
Ее готовят почти так же, как сброженную пахту. К сливкам добавляют 0,5—1% закваски, используемой при производстве масла. Далее продукт выдерживают, пока концентрация кисло­ты не достигнет 0,6%.Н ...

Интенсификация фотосинтеза методами биотехнологии
Увеличение выхода биомассы за год в существующих сегодня системах растениеводства может быть достигнуто двумя путя­ми: во-первых, за счет увеличения скорости фотосинтеза до пределов, возможных в оптим ...

Компания ВиАТорг г. Белгород
Компания ООО "ВиАТорг" официальный представитель Харьковского завода транспортного оборудования в России (г. Белгород) поставляет по РФ и СНГ криобиологические сосуды (Дьюара). Предлагаем сотрудниче ...

Принцип «псевдоожиженного слоя»
Данная технология, введенная в практику в 1980 г., во многих отношениях представляет собой сочетание систем перколяци-онных фильтров и активного ила. Она весьма экономична бла­годаря использованию выс ...

Гибридизация путем скрещивания
Наиболее простой путь создания организмов с желаемым комп­лексом генетически обусловленных признаков — это скрещива­ние штаммов, принадлежащих к противоположным половым типам. Как про так и эука ...

Перспективы развития
В будущем влияние биотехнологии на развитие химической про­мышленности будет определяться возможностью объединения; принципов микробиологии, биохимии и химической технологии. Основной предпосылкой исп ...

Ферментация
Получение метана (биогаза) методом анаэробной переработки сырья и производство этилового технического спирта путем сбраживания при участии дрожжей — два главных примера био­логических технологий ...

Превращение, накопление и иммобилизация металлов микроорганизмами
Побуждаемая строгими законами об охране окружающей сре­ды, необходимостью извлечения ценных металлов и очистки промышленных вод для их повторного использования, горно­рудная промышленность все шире пр ...

Микробиологические основы процесса
Переработка сырья в метан происходит в ходе сложных взаи­модействий в смешанных популяциях микроорганизмов. По осо­бенностям обмена веществ их можно подразделить на три ос­новные группы: первая осущес ...

Производство исходного сырья
Что касается этилового спирта как топлива, то почти все су­ществующие способы его производства основаны на переработ­ке мелассы, сока сахарного тростника, кукурузного крахмала или же в меньшей мере ма ...

Что такое биотехнология?
Биотехнология — это не просто новомодное, броское название одной из древнейших сфер деятельности человека; так могут думать одни только скептики. Само появление этого термина в нашем словаре глу ...

Созревание
Если необходимо, на следующем этапе сыры отправляют на созревание или выдержку. К этой группе сыров относятся чед­дер и швейцарский; сливочные сыры не выдерживают. Созре­вание происходит в специальных ...

Слияние клеток животных
Осуществить слияние клеток и получить внутри- или межви­довые гибриды клеток млекопитающих методически проще, чем в случае микроорганизмов или растений, так как клетки млеко­питающих не имеют клеточно ...

Системы переработки отходов в аэробных условиях
Для переработки твердых отходов необходимо много времени и средств, поэтому на фермах с интенсивной технологией для их удаления стали широко использовать воду. Образующуюся взвесь закачивают в хранили ...

Первый запатентованный процесс микробной трансформации стероидов
Первый запатентованный процесс микробной трансформации стероидов был разработан в 1937 г., но внедрить его в промыш­ленность удалось лишь в 1952 г. [процесс 11-α-гидроксилирования прогестерона н ...


Роль биотехнологии в производстве высококачественного топлива
Биотехнологии » Энергия и биотехнология


Роль биотехнологии в производстве высококачественного топлива («premium fuels») из биологиче­ского сырья. Начнем с того, что термин «биомасса», который многими микробиологами понимается в относительно узком смысле, сегодня при описании самых общих принципов произ­водства разнообразных видов высококачественного топлива и веществ специального назначения из растений, выращенных не­посредственно для этих целей, или из биологических отходов, образующихся, например, в сельском хозяйстве или пищевой промышленности, используется в более широком смысле. В ос­нове как запасания энергии (фотосинтез), так и переработки сырья (биомассы) в более ценное топливо (путем фермента­ции) лежат биологические процессы. Особое внимание сегодня уделяется разработке более изощренных генетических методов: считается, что они сыграют важную роль как при выведении улучшенных сортов растений с более высокой, урожайностью, так и новых форм микроорганизмов для осуществления процес­сов конверсии. Кроме того, вполне возможно создание комбини­рованных искусственных систем, включающих отдельные ком­поненты животных и растений. Таким путем можно получить газообразный водород, связанный С или NH3.

Получение биомассы: технология, основанная на солнечной энергии
Биотехнологии » Энергия и биотехнология


Солнце является неиссякаемым источником энергии. Каждый год на поверхность Земли поступает 3*2024 Дж энергии, в то время как запасы нефти, природного газа, угля, урана по оцен­кам эквивалентны 2,5*1022 Дж (8*1011 т в «угольном эквивален­те»). Понятно, что менее чем за неделю Земля получает от Солнца такое же количество энергии, какое содержится во всех невозобновляемых ее запасах. Проведем иное сравнение: если бы только 0,1% поверхности Земли занимали коллекторы, ис­пользующие солнечную энергию с коэффициентом полезного действия около 10%, то были бы удовлетворены все текущие потребности в энергии в мире за год (3*1020 Дж).
 

Ресурсы
Биотехнологии » Энергия и биотехнология


Основными поставщиками биомассы, идущей на топливо, слу­жит сельское и лесное хозяйство. Пытаясь оценить их нынешние возможности, следует, видимо, исходить из наличных земельных площадей, урожайности современных культур, продуцирующих сахар и крахмал, и числа работников, занятых в сельском хо­зяйстве. Ежегодный прирост биомассы во всем мире составляет около 2*1011 т, из них приблизительно 1,2*1011 т составляет древесина (в пересчете на сухое вещество). Примерно 60% вырубаемой древесины используется как топливо. Если потребление и возобновление леса сбалансированы, то прирост, не идущий сегодня в дело, составляет 3*1010 т, что эквивалент­но около 1010 т целлюлозы.
Обращают на себя внимание два обстоятельства: во-первых, колоссальные запасы древесины в Канаде, СССР и Южной Америке (в основном в Бразилии и тропиках) и, во-вторых, не­хватка ее в настояще время в Азии, где быстро растущее насе­ление расходует биомассу в основном на топливо, используя ее, с малой эффективностью, без регулярного возобновления.

Фотосинтез
Биотехнологии » Энергия и биотехнология


Фотосинтез является ключевым процессом жизнедеятельности и осуществляется в основном в растениях. В простейшей форме он описывается реакцией
Фотосинтез
Кроме углерода, водорода и кислорода в ходе светозависимых реакций, протекающих в растениях, в состав органиче­ских веществ включаются также азот и сера.
Основные процессы фотосинтеза сегодня уже хорошо изве­стны. Они протекают в хлоропластах (рис. 2.2), которые погло­щают СО2, поступающий в растение путем диффузии.

Эффективность фотосинтеза
Биотехнологии » Энергия и биотехнология


Эффективность фотосинтеза с точки зрения производства био­массы можно оценить через долю общей солнечной радиации, попадающей на определенную площадь за определенное время, которая запасается в органических веществах урожая. Продук­тивность системы можно оценить по количеству органического сухого вещества, получаемого с единицы площади за год, и вы­разить в единицах массы (кг) или энергии (мДж) продукции, полученной с гектара за год.

Интенсификация фотосинтеза методами биотехнологии
Биотехнологии » Энергия и биотехнология


Увеличение выхода биомассы за год в существующих сегодня системах растениеводства может быть достигнуто двумя путя­ми: во-первых, за счет увеличения скорости фотосинтеза до пределов, возможных в оптимальных условиях, во-вторых, путем удлинения периода оптимального фотосинтеза.
Для того чтобы достичь этой цели, необходимо оценить от­носительную важность различных факторов, ограничивающих фотосинтез. Действие этих факторов определяется как внутрен­ними фотобиологическими и физиологическими ограничениями,, так и теми характеристиками окружающей среды, которые ска­зываются на проявлении этих лимитирующих факторов. К чис­лу таких важнейших факторов относятся: индекс урожайности, свет, СO2, вода, температура, питательные вещества, вредители и болезни, влияние кислорода и фотодыхание, темновое дыха­ние, ограничение скорости переноса электронов, содержание ферментов карбоксилирования, светособирающих пигментов, диссипация энергии в побочных реакциях и скорость переноса веществ из хлоропластов.

Соотношение видов энергии
Биотехнологии » Энергия и биотехнология


При анализе работы любой сельскохозяйственной системы важ­но учитывать, как соотносится количество энергии, запасенной в системе, с энергозатратами на ее получение (отношение энер­гии на входе и выходе). Для систем по производству биомассы это имеет особое значение.  В доступную для использова­ния форму превращается лишь одна десятая часть энергии, по­требляемой животными и растениями, выращиваемыми в теп­лицах. И тепличные растения, и продукция животноводства — важные компоненты современного сельского хозяйства. Отме­тим, однако, что небольшое уменьшение поголовья животных, выращиваемых для употребления в пищу, если это окажется це­лесообразным, высвободит  большое  количество органических продуктов, которые могут быть использованы как пища, топли­во и т. д. Сопоставление величин энергетического коэффициента (выход/вход) при производстве зерна кукурузы в США показа­ло, что он уменьшился с 3,7 в 1945 г. до 2,8 в 1970 г.

Древесина как сырье для производства биотоплива
Биотехнологии » Энергия и биотехнология


Как сырье для производства биотоплива древесина обладает рядом достоинств: выход продукции в пересчете на гектар очень высок из древесины мы получаем значительно больше биомас­сы, чем из любого другого источника разведение лесов требует гораздо меньших вложений, чем выращивание других культур. К числу недостатков нужно отнести длительность роста до зре­лости, а также тот факт, что главный компонент древесины, лигноцеллюлоза, очень сложна для переработки. В ближайшем будущем наиболее удобным и доступным источником сырья бу­дут отходы деревообрабатывающей промышленности, но впо­следствии все возрастающее значение будет приобретать «вы­ращивание топлива». Поскольку основные затраты связаны с очисткой земли и посадкой, особое внимание уделяется сегодня выращиванию твердодревесинного быстрорастущего порослево­го леса. Здесь дело, вероятно, можно организовать так, чтобы получать продукцию каждые пять лет. Подсчитано, что лесовод­ческая «энергоферма» может ежегодно давать около 10—30 т биомассы с гектара.

Водоросли и водные растения
Биотехнологии » Энергия и биотехнология


Потенциальный урожай биомассы у пресноводных и морских растений весьма велик, но чрезвычайно большое содержание воды во многих этих растениях при сборе и сложность сушки на солнце препятствуют использованию их как топлива путем пря­мого сжигания. По этой причине наиболее подходящей техноло­гией переработки водных растений и сырых отходов земледелия в топливо, корма и удобрения является анаэробная фермента­ция. Эти растения просто процветают в сточных водах. Они ус­пешно очищают воду и хорошо при этом растут. Таким обра­зом, они могут играть двойную роль: улучшать состояние окру­жающей среды и служить важным источником энергии.

Масличные растения
Биотехнологии » Энергия и биотехнология


Растительные масла могут быть получены из самых разнообраз­ных растений. Помимо хорошо известных нам подсолнечников, пальм, кокосовых орехов, оливок и арахиса для этой цели ис­пользуются и более экзотические виды: джоджоба и гваюла (оба — растения пустынь), клещевина, рапс (семена), растения, выделяющие млечный сок, эвкалипты, тыквы, копайба, малме-лейро, орехи бабассу и др. Масла из этих растений, как и из многих других, исследуются в разных странах. Однако, прежде чем принимать решение об использовании этих масел как топ­лива и о налаживании их производства, необходимо оценить их стоимость, а также количество энергии, необходимое для выра­щивания соответствующих растений и переработки сырья. Нет смысла выращивать растения и получать из них литр раститель­ного масла, если при этом затрачивается два литра первосорт­ного горючего. Определяющий фактор здесь — урожайность, т. е. количество масла, которое фермер может получить с гекта­ра посевов, а также денежные затраты и трудоемкость. Опыты с подсолнечником и соей на юге Африки и на Среднем Западе США показали, что можно получить до тонны масла с гектара, даже если использовать не самый лучший способ отжима. Со­держание масла в собранном сырье составляет при этом 40— 50% по массе. Выход масла в две тонны с гектара считается обычным; сообщалось, что он может достигать и пяти тонн. Та­кое масло стоит около двух долларов за галлон (20 пенсов за литр). При этом запасенная в продукте энергия относится к энергозатратам при выращивании и переработке урожая как 3—10 к 1.

Производство исходного сырья
Биотехнологии » Энергия и биотехнология


Что касается этилового спирта как топлива, то почти все су­ществующие способы его производства основаны на переработ­ке мелассы, сока сахарного тростника, кукурузного крахмала или же в меньшей мере маниока. Сбраживание — это лишь одна из стадий процесса; помимо него сюда относятся выращивание растений, их уборка, перевозка на заводы, приготовление сусла, сбраживание, перегонка, обезвоживание, денатурация, изготов­ление смесей и реализация продукции. Кроме того, приходится решать вопрос об удалении или переработке жидких отходов (кубовых остатков). Понятно, что рассказать обо всем этом подробно здесь невозможно, и поэтому мы обратим внимание лишь на те стороны проблемы, которые важны в плане техниче­ской осуществимости, баланса энергии и экономики, но в то же время касаются и микробиологических аспектов работы этой си­стемы, которые могут быть улучшены биотехнологическим пу­тем. Их можно разделить на две группы. Первая связана с при­родой сырья, в котором должно содержаться нужное количест­во сбраживаемого сахара, получаемого дешевым способом и при малых энергозатратах, а вторая — с отгонкой спирта. В этом последнем случае можно уменьшить затраты (как энергетиче­ские, так и экономические), если повысить концентрацию спир­та в продукте ферментации.

Ферментация
Биотехнологии » Энергия и биотехнология


Получение метана (биогаза) методом анаэробной переработки сырья и производство этилового технического спирта путем сбраживания при участии дрожжей — два главных примера био­логических технологий, которые могут использоваться для полу­чения более высококачественного топлива из растений.
Если принять, что исходным сырьем является глюкоза, об­щую схему осуществляемых превращений можно представить следующим образом:
 Получение метана (биогаза)

Этиловый спирт
Биотехнологии » Энергия и биотехнология


Производство этилового спирта при помощи дрожжей основана на давно устоявшейся технологии. Для полу­чения топливного спирта необходимо осуществить ряд процес­сов (рис. 2.5): подготовить сырье, провести брожение, отгонку и очистку, обезвоживание (если предполагается использовать продукт в смеси с нефтью), денатурацию и организовать хране­ние. Нужно также переработать кубовые остатки (захоронить или использовать на корм животным и т. п.). На каждой стадии есть свои узкие места, о которых надо всегда помнить, посколь­ку это прямо определяет саму возможность использования про­цесса сбраживания для получения жидкого топлива, его энерго­баланс и экономичность.
Объем производства крупных спиртовых заводов может быть очень большим: они ежегодно потребляют тысячи тонн сырья и выпускают миллионы литров продукции. Наибольший вклад в: энергобаланс страны производство топливного спирта дает в Бразилии. В 1982 г. там было получено 5*109 л спирта, и произ­водство его по программе Proalcool расширяется. Ожидается, что в 1985 г. будет получено более 11*109 л.
 

Основная масса вырабатываемого на крупных предприятиях спирта
Биотехнологии » Энергия и биотехнология


Основную массу вырабатываемого на крупных предприятиях спирта получают сегодня при помощи дрожжей [Saccharomyces, обычно S. cerevisiae, но иногда и S. uvarum (carlsbergensis) и S. diastaticus]. Первая задача здесь — подобрать дрожжи,под­ходящие для переработки определенного субстрата. Дрожжи S. cerevisiae могут расти на глюкозе, фруктозе, мальтозе имальтотриозе, т. е. на сахарах, содержащихся в их обычной «пище», которую они получают от сахар- или крахмал-содержащих рас­тений. S. diastaticus может также использовать, декстрины, а виды Kluyveromyces fragilis и K. lactus — лактозу.

Энергобаланс
Биотехнологии » Энергия и биотехнология


Общий баланс энергии как при производстве спирта, так и при анаэробной переработке может быть слабо положительным или даже отрицательным, поскольку при производстве сырья, его переработке, сортировке, очистке или отжиме потребляется зна­чительное количество энергии. Эти энергозатраты покрываются за счет использования остатков растительного сырья (багассьр или соломы), сжигания древесины или ископаемого топлива. Используются также «тепловые отбросы» электростанций.

Получение метана в анаэробных условиях
Биотехнологии » Энергия и биотехнология


При переработке сырья в анаэробных условиях получается смесь газов — метана и углекислоты, которые образуются в ре­зультате разложения сложных субстратов при участии смешан­ной популяции микроорганизмов разных видов. Поскольку ис­комый продукт — это газ, сбор его не составляет труда: он про­сто выделяется в виде пузырьков. Впрочем, иногда при более сложных способах его использования или распределения по тру­бам возникает необходимость в очистке от примесей или в ком­прессии.
 

Микробиологические основы процесса
Биотехнологии » Энергия и биотехнология


Переработка сырья в метан происходит в ходе сложных взаи­модействий в смешанных популяциях микроорганизмов. По осо­бенностям обмена веществ их можно подразделить на три ос­новные группы: первая осуществляет первичный распад поли­мерных веществ, вторая образует летучие жирные кислоты, в частности уксусную, водород и СО2, а третья — метан (метан-образующие бактерии).

Выход продукции
Биотехнологии » Энергия и биотехнология


При образовании метана, когда субстратом является глюкоза, весовой выход газа составляет только около 27%, а выход энер­гии (теоретически) — более 90%. Однако на практике из-за сложного состава сырья, перерабатываемого в анаэробных ре­акторах, и низкой эффективности его переработки валовый вы­ход энергии составляет от 20 до 50%. Определение выхода био­газа— задача более сложная, чем выхода метана. Прежде все­го нужно уточнить, что мы хотим измерить: валовый выход (биогаз-СО2 в смеси с метаном) или же один метан. Состав газа-существенно изменяется в зависимости от условий в реакторе,, а также от природы подаваемого в него сырья. Теоретически при переработке углеводов на СО2 и метан эти газы должны образовываться в равных количествах. На самом деле не весь. СО2 выделяется в виде газа, так как он растворяется в воде it может взаимодействовать с гидроксил-ионами с образованием бикарбонатов. Концентрация образующегося бикарбоната будет зависеть от скорости протока жидкости, рН, температуры и со­держания в жидкой фазе ионов металлов и других веществ.

Бесклеточные системы
Биотехнологии » Энергия и биотехнология


Одна из привлекательных возможностей, предоставляемых тех­нологией «солнечной энергетики», заключается в использовании целых организмов как биологических катализаторов при произ­водстве аммиака и водорода за счет солнечной энергии. Опыты «с цианобактериями (сине-зелеными водорослями) и зелеными водорослями показали, что они способны образовывать водород и кислород путем прямого фотолиза воды. Лежащий в основе этого явления процесс фотосинтеза сформировался в результате генно-инженерной деятельности Природы. Фотосинтезирующие бактерии неспособны разлагать воду, но могут на свету образо­вывать большие количества водорода (без примесей кислорода) или аммиака. Для этого им нужны только простые органические и неорганические субстраты. Такие вещества содержатся в про­мышленных отходах, и поэтому превращение солнечной энергии фотосинтезирующими бактериями вполне может быть сопряже­но с переработкой отходов.

Комбинированные системы, образующие водород
Биотехнологии » Энергия и биотехнология


Около десяти лет назад в области исследований возобновляемых источников энергии было сделано замечательное открытие. Было показано, что если взять мембраны, содержащие хлорофилл, и добавить к окружающему раствору ферменты, действующие как катализаторы, то на свету будет происходить разложение воды (фотолиз) на водород и кислород (рис. 2.6). Это открытие было первым шагом на пути к созданию фотореактора, при по­мощи которого энергия Солнца может запасаться в ценном топ­ливе— водороде. Фотохимики и фотобиологи проявляют боль­шой интерес к этим исследованиям, поскольку получение «сол­нечного водорода» из воды открывает новые перспективы в энер­гетике. Процессу фотолиза присущ ряд особенностей, которых нет у каких-либо других систем преобразования энергии. Суб­стратом в нем является обычная вода, источником энергии с не­ограниченным запасом — солнечный свет, а продуктом — водо­род. Его просто хранить, он не загрязняет окружающую среду. Процесс этот циклический, поскольку при потреблении водорода регенерируется субстрат —вода. Система привлекательна и тем, что она работает при обычной температуре; в ней не образуются токсичные промежуточные соединения.

ООО "ВиАТорг" © 2009
Rambler's Top100 Рейтинг@Mail.ru