О КОМПАНИИ
ООО "ВиАТорг"
г. Белгород
ПРОДУКЦИЯ
Cосуды Дьюара криобиологические
КОНТАКТЫ
Связь с нами

ПРОДУКЦИЯ
Cосуды криобиологические (Сосуды Дьюара)



КОНТАКТЫ
ООО "ВиАТорг", г. Белгород
Компания "ВиАТорг" официальный представитель Харьковского завода транспортного оборудования в России поставляет криобиологические сосуды (Сосуды Дьюара) по России и странам СНГ.
У нас Вы можете купить Сосуды Дьюара недорого

E-mail:viatorg@yandex.ru

СТАТЬИ
Биотехнологии, принципы и применение


Партнеры
Объявления


Популярное
Интересные факты криобиологии
Коммерческие аспекты применения ферментов
Применение ферментов в химической технологии обычно бывает обусловлено их высокой избирательностью и стереоспецифичностью, однако, как отмечалось ранее, эти их свойства не всегда оказываются желательн ...

О мерах безопасности при производстве белка одноклеточных организмов
Микроорганизмы, традиционно используемые в пищевой про­мышленности, часто входят в состав конечного продукта (хотя доля их там обычно невелика). Как показывает опыт, безопас­ность этих продуктов не вы ...

Направленное введение лекарственных препаратов
Моноклональные антитела могут найти применение для вве­дения лекарственных веществ и токсинов в определенную часть тела (например, опухоль) либо путем их непосредственного присоединения к таким вещест ...

Другие органические кислоты
Процессы, основанные на микробиологической ферментации, разработаны и для получения ряда других органических кислот. Среди них — глюконовая кислота и ее производные, яблочная, виннокаменная, сал ...

Проблема охраны окружающей среды
С момента возникновения цивилизованного общества перед ним все время стояла проблема охраны окружающей среды. Из-за промышленной, сельскохозяйственной и бытовой деятель­ности человека постоянно происх ...

Перспективы развития
В будущем влияние биотехнологии на развитие химической про­мышленности будет определяться возможностью объединения; принципов микробиологии, биохимии и химической технологии. Основной предпосылкой исп ...

Контроль за патогенностью
Одно из основных достоинств процесса микробного анаэробно­го разложения состоит в элиминации с его помощью патоген­ных микроорганизмов, в особенности агентов, вызывающих порчу пищи (главные образом Sa ...

Отходы, целлюлозно-бумажной промышленности
Волокнистый материал, применяющийся при производстве бу­маги и других продуктов, получают как из древесных, так и: из травянистых растений после химического расщепления лиг­нина. Однако этот процесс с ...

Другие полимеры, образуемые микроорганизмами
Все описанные до сих пор биополимеры полностью синтезиру­ются определенными микроорганизмами в процессе роста на том или ином источнике углерода. Существуют и иные способы получения новых полимерных м ...

Микробные полисахариды: свойства, применение и коммерческая ценность
Ксантан   [келтрол   (Keltrol),   келзан   (Kelzan),   Родогель (Rhodogel)] Ксантан синтезируется Xanthomonas campestris при росте на глюкозе, сахарозе, крахмале, кукурузной декстрозе и барде. В качес ...

Иммуногистохимия
Меченые антитела могут использоваться для изучения распре­деления антигенов в срезах тканей с помощью как светового, так и электронного микроскопа. При работе по общепринятому «сэндвич-методу» на срез ...

Вино
Необходимое условие любого спиртового бродильного процес­са — наличие сахара в сырье. Так, в производстве вина исполь­зуется сахар виноградного сока. Почти все вино в мире делают из винограда од ...

Первый запатентованный процесс микробной трансформации стероидов
Первый запатентованный процесс микробной трансформации стероидов был разработан в 1937 г., но внедрить его в промыш­ленность удалось лишь в 1952 г. [процесс 11-α-гидроксилирования прогестерона н ...

Литература
Atkinson В., Mavituna F. (1983). Biochemical Engineering and Biotechnology Handbook, Macmillan, Byfleet, Surrey. Brenner S., Hartley B. S., Rodgers P. J. (eds.) (1980). New Horizons in Indust­rial Mic ...

Масличные растения
Растительные масла могут быть получены из самых разнообраз­ных растений. Помимо хорошо известных нам подсолнечников, пальм, кокосовых орехов, оливок и арахиса для этой цели ис­пользуются и более экзот ...

Принципы и применение
Совсем недавно слово «биотехнология» отсутствовало в нашем языке; вместо него мы употребляли слова «промышленная мик­робиология», «техническая биохимия» и т. п. Новый термин, объединивший в себе все п ...

Методы слияния протопластов
Хотя о возможности слияния протопластов растений было из­вестно уже давно, метод контролируемого слияния с воспроиз­водимыми результатами был разработан лишь в 1970 г. (Power et al., 1970). Тем самым ...

Пищевые продукты и напитки
Традиционные способы использования микроорганизмов при производстве различных сортов пива, вина и сброженных про­дуктов совершенствовались тысячелетиями, и все же до недав­него времени в них было боль ...

Повторное использование кофактора
Для проявления каталитической активности 30% известных фер­ментов нужен один из пяти кофакторов (NAD, NADP, ATP, FAD либо СоА). Само применение этих ферментов в биоката­лизе будет определяться тем, уд ...

Отдаленные перспективы
Затраты на организацию многотоннажных биотехнологических производств столь велики, что лишь фирмы, способные осуще­ствлять долгосрочные стратегические программы, могут решить­ся на внедрение такой тех ...


Уксус
Биотехнологии » Пищевые продукты, напитки и биотехнология


Хотя уксус и не принадлежит к алкогольным напиткам, мы ре­шили остановиться на его производстве в этом разделе, посколь­ку одна из двух стадий его получения включает спиртовое бро­жение.
Уксус — это продукт, содержащий не менее 4% (вес/объем) уксусной кислоты; его получают с помощью двухстадийного-процесса. Вначале осуществляют спиртовое брожение, в ходе которого сахар сырья превращается в спирт при участии S. сеrevisiae. Сырьем может быть любой продукт, который сбражи­вается с образованием спирта. После завершения этого этапа дрожжам дают осесть и собирают надосадочную жидкость.

Традиционные белковые продукты, получаемые путем ферментации
Биотехнологии » Пищевые продукты, напитки и биотехнология


Микроорганизмы начали использовать в производстве белковых продуктов задолго до возникновения микробиологии. Достаточ­но упомянуть всевозможные разновидности сыра, а также про­дукты, получаемые путем ферментации соевых бобов. И в пер­вом, и во втором случае питательной основой является белок. При выработке их при участии микробов происходит глу­бокое изменение свойств белоксодержащего сырья. В результа­те получают пищевые продукты, которые можно дольше хранить (сыр) или удобнее потреблять (соевый творог). Микробы игра­ют роль и в производстве некоторых мясных продуктов, пред­назначенных для хранения. Так, при изготовлении некоторых сортов колбасы (bologna, salami) используется кислотное бро­жение, обычно при участии комплекса молочнокислых бактерий. Образовавшаяся кислота способствует сохранности продукта и вносит вклад в формирование его особого вкуса. Кислотооб­разующие бактерии используются и при засоле мяса — еще од­ном способе консервации. Ряд блюд восточной кухни получают путем ферментации рыбы: для этого применяют плесневые гри­бы и дрожжи.

Белок одноклеточных организмов
Биотехнологии » Пищевые продукты, напитки и биотехнология


По многим важным показателям биомасса микроорганизмов может обладать весьма высокой питательной ценностью. В не­малой степени эта ценность определяется белками: у большин­ства видов они составляют значительную долю сухой массы клеток. На протяжении десятилетий активно обсуждаются и ис­следуются перспективы увеличения доли белка микроорганиз­мов в общем балансе производимого во всем мире белка. Такое увеличение возможно как в косвенной форме, путем введения белковых добавок в корм животным (что уменьшает потреб­ность в таких продуктах, как соевая и рыбная мука), так и в прямой, путем получения продуктов питания. О белках, идущих на корм скоту, речь идет в гл. 9. Здесь мы рассмотрим те слу­чаи, когда биомасса микроорганизмов непосредственно исполь­зуется в пищу.
 

Непрерывное культивирование
Биотехнологии » Пищевые продукты, напитки и биотехнология


Метод непрерывного культивирования основан на поддержании в системе динамического равновесия. Для перемешиваемой глу­бинной культуры постоянного объема это означает постоянство скорости роста микроорганизмов, которое обеспечивается путем равномерного ее разбавления свежей питательной средой (при сохранении объема). Среды, используемые при непрерывном культивировании, всегда составляют таким образом, чтобы один из субстратов (обычно это источник углерода) лимитировал рост, поэтому его содержание в культуральной жидкости мини­мально.

О мерах безопасности при производстве белка одноклеточных организмов
Биотехнологии » Пищевые продукты, напитки и биотехнология


Микроорганизмы, традиционно используемые в пищевой про­мышленности, часто входят в состав конечного продукта (хотя доля их там обычно невелика). Как показывает опыт, безопас­ность этих продуктов не вызывает сомнений. Особенность белка одноклеточных организмов заключается в том, что этот продукт, во-первых, практически целиком состоит из микробной биомас­сы и, во-вторых, в его производстве нередко принимают участие микробы, опыт использования которых мал и которые ранее в пище отсутствовали. Понятно, что государственные учрежде­ния, контролирующие качество пищевых продуктов, требуют, чтобы выходу на рынок БОО предшествовали испытания на безопасность нового продукта. Такие испытания всегда дорого­стоящи, и это сдерживает развитие производства, в частности производства продуктов на основе БОО, особенно предназна­ченных в пищу. По этой причине крен в развитии производства БОО был сделан в сторону выработки кормов для животных, а не белков, непосредственно идущих в пищу. Правила оценки безвредности и способы тестирования продуктов, идущих на приготовление кормов, менее жесткие, а роль эстетического фактора не столь значительна. По этой причине для производ­ства таких белков можно использовать более широкий круг суб­стратов, в том числе и органические вещества отходов. К числу БОО-продуктов, производимых промышленностью на корм жи­вотным, относятся Pruteen фирмы ICI (биомасса бактерий, вы­ращенных на метаноле), Toprina фирмы ВР (дрожжи, выра­щенные на н-алканах) и грибная масса, получаемая по техно­логии фирмы Finnish Pekilo. При ее производстве в качестве субстрата используется сульфитный щелок, отход бумажной промышленности. Все эти БОО выпускаются в виде слабо окра­шенных порошков.

Грибной белок (микопротеин)
Биотехнологии » Пищевые продукты, напитки и биотехнология


Микопротеин — это пищевой продукт, состоящий в основном из мицелия гриба. При его производстве используется штамм Fusarium gratninearum, выделенный из почвы. И процесс, и про­дукт — это результат осуществления программы по их интен­сивному развитию, изучению и испытанию. Микопротеин про­изводят сегодня на опытной установке методом непрерывного выращивания. В качестве субстрата используется глюкоза и другие питательные вещества, а источниками азота служат аммиак и аммонийные соли. Общая схема функционирования установки приведена на рис. 3.4. После завершения стадии фер­ментации культуру подвергают термообработке для уменьшения содержания рибонуклеиновой кислоты, а затем отделяют мице­лий методом вакуумного фильтрования.

Пищевые добавки и ингредиенты
Биотехнологии » Пищевые продукты, напитки и биотехнология


Подкислители
Подкислители применяются в основном как вкусовые добавки для придания продуктам «острого» вкуса. В практику они во­шли скорее всего в результате широкого использования орга­нических кислот для сохранения пищи.
По-видимому, самым популярным подкислителем в пищевой промышленности сегодня является лимонная кислота. Сначала этот важный продукт получали, отжимая сок из лимонов (в Италии): таким путем до начала 20-х годов удовлетворялось три четверти мировой потребности в лимонной кислоте. Сегодня ее получают при участии A. niger, сбраживая мелассу и содер­жащие глюкозу гидролизаты. Отметим, что процесс сбражива­ния нужно строго контролировать, так как лимонная кислота в отличие от других вторичных метаболитов играет важную роль в регуляции обмена веществ. При консервировании поми­доров широко используют яблочную кислоту; ее образует A. fla-vus. К числу других кислот, находящих широкое применение в пищевой промышленности, относятся итаконовая (продуцент — A. terreus), глкжоновая, используемая в форме глюконолактона (продуцент —Л. niger), и фумаровая (виды Rhizopus).

Консервированные овощи
Биотехнологии » Пищевые продукты, напитки и биотехнология


Как и в случае многих других разновидностей пищевого сырья, необходимость сохранения овощей для употребления их в тече­ние всего года привела к созданию ряда новых пищевых про­дуктов. До того как в практику вошли консервирование в бан­ках и замораживание, для сохранения овощей использовалась главным образом соль. Низкие концентрации соли (2—2,5%) при переработке содержащих сахара овощей с малой долей белков не препятствуют брожению с образованием кислот, иду­щему при участии бактерий. Этот способ дает хорошие резуль­таты, но если белка в овощах много (горох, фасоль),то продукт портится. Если такие овощи засаливают, то соли добавляют столько, чтобы полностью подавить брожение. Когда соли до­бавляют мало, основную роль в консервации играют молочно­кислые бактерии. Образование молочной кислоты из Сахаров препятствует развитию бактерий кишечной группы, протеолити-ческих бактерий, анаэробных и спорообразующих видов.

Продукты из сои
Биотехнологии » Пищевые продукты, напитки и биотехнология


Соя издавна принадлежит к числу главных пищевых культур в странах Азии, особенно в Китае и Японии. В восточной кухне она служила главным поставщиком белка и масла задолго да того, как ее стали использовать как источник этих веществ в странах Запада. На основе соевых бобов на Востоке вырабаты­вают множество традиционных пищевых продуктов; их особый вкус определяется деятельностью микроорганизмов. Это глав­ным образом грибы, в частности представители рода Aspergillus.

Применение ферментов при выработке фруктовых соков
Биотехнологии » Пищевые продукты, напитки и биотехнология


Применение ферментов из микроорганизмов — один из главных. путей, которые биотехнология использует и будет использовать для обновления пищевой промышленности. Наибольшие успехи были достигнуты при производстве фруктовых соков: здесь ис­пользуют такие ферменты, как пектиназы, целлюлазы, гемицел-люлазы, амилазы и протеиназы. Эти ферменты применяются не только в давно освоенных производствах; с их помощью удалось расширить ассортимент и добиться большего выхода продукции из сырья. Ферменты используются на следующих основных стадиях переработки фруктов. 1. Обработка мезги: разрушение мякоти при выработке фруктовой кашицы или нек­таров; увеличение выхода сока; лучшее отделение веществ, от­ветственных за цвет и вкус. 2. Обработка сока: уменьшение вязкости; облегчение изготовления концентратов; упрощение процедур осветления1, фильтрования и стабилизации сока.

Ближайшие перспективы
Биотехнологии » Пищевые продукты, напитки и биотехнология


По оценкам примерно 15% реализуемой продукции пищевой промышленности вырабатывается на основе биотехнологии, но влияние ее на эту промышленность сегодня не больше, чем 25 лет назад (Tonge, Jarman, 1981). Определяется это тремя при­чинами. 1. Производство пищевых продуктов и сегодня являет­ся трудоемкой отраслью промышленности с большим объемом ручного труда и низким уровнем технологии. Многие производ­ственные процессы в ней есть не что иное, как увеличенные копии кулинарных приемов. Наука, изучающая их основы, сла­бо развита, а суть самих процессов не до конца понята.

Отдаленные перспективы
Биотехнологии » Пищевые продукты, напитки и биотехнология


Затраты на организацию многотоннажных биотехнологических производств столь велики, что лишь фирмы, способные осуще­ствлять долгосрочные стратегические программы, могут решить­ся на внедрение такой технологии. Главное преимущество новой технологии заключается в том, что выход продукции с ферментера или биореактора несравненно выше, чем от растения или животного, так что производство предметов потребления таким способом всегда оказывается более выгодным.

ЛИТЕРАТУРА
Биотехнологии » Пищевые продукты, напитки и биотехнология


Arima К.. (1977). Recent developments and future directions of fermentations In
Japan, Devs ind. Microbiol., 18, 78 — 117. Aunstrup K.. (1979). Production of extracellular enzymes. In: Applied Bioche-
mistry and Bioengineering, Vol. 2 (eds. Wingard L. В., Katchalski-Katzir E,
and Goldstein L.), pp. 27—69, Academic Press, London. Birch G. G., Blakebrough N., Parker K. J. (eds.) (1981). Enzymes and Food
Processing, Appl. Sci. Publ., London. Beech F. W. (1972). Cider making and cider research: a review, J Inst. Brew.,
78, 477—490. Beauchat L. R. (ed.)  (1978). Food and Beverage Mycology, AVI Publishing

ООО "ВиАТорг" © 2009
Rambler's Top100 Рейтинг@Mail.ru