О КОМПАНИИ
ООО "ВиАТорг"
г. Белгород
ПРОДУКЦИЯ
Cосуды Дьюара криобиологические
КОНТАКТЫ
Связь с нами

ПРОДУКЦИЯ
Cосуды криобиологические (Сосуды Дьюара)



КОНТАКТЫ
ООО "ВиАТорг", г. Белгород
Компания "ВиАТорг" официальный представитель Харьковского завода транспортного оборудования в России поставляет криобиологические сосуды (Сосуды Дьюара) по России и странам СНГ.
У нас Вы можете купить Сосуды Дьюара недорого

E-mail:viatorg@yandex.ru

СТАТЬИ
Биотехнологии, принципы и применение


Партнеры
Объявления
web студия

Популярное
Интересные факты криобиологии
Отдаленные перспективы
Затраты на организацию многотоннажных биотехнологических производств столь велики, что лишь фирмы, способные осуще­ствлять долгосрочные стратегические программы, могут решить­ся на внедрение такой тех ...

Интенсификация фотосинтеза методами биотехнологии
Увеличение выхода биомассы за год в существующих сегодня системах растениеводства может быть достигнуто двумя путя­ми: во-первых, за счет увеличения скорости фотосинтеза до пределов, возможных в оптим ...

Методы инокуляции
Инокулировать ВА-эндофитами молодые многолетние растения, например сеянцы деревьев или черенки, относительно просто, особенно если выращивать их в контейнерах. Несколько грам­мов неочищенного инокулят ...

Микробные полисахариды, синтезируемые Alcatigenes spp.
Компанией Kelco в США за последнее время доведено до про­мышленных масштабов получение нескольких полисахаридов ери участии различных видов Alcaligenes. В глубинных культурах образуется с большим выхо ...

Применение ферментов при выработке фруктовых соков
Применение ферментов из микроорганизмов — один из главных. путей, которые биотехнология использует и будет использовать для обновления пищевой промышленности. Наибольшие успехи были достигнуты п ...

Криобиологические сосуды (Сосуды Дьюара)
Сосуды Дьюара (по имени Дж. Дьюара сосуды с двойными стенками, между которыми создан вакуум [не менее 1,33 мн/м2 (10-5 мм рт. cт.)], что обеспечивает высокую теплоизоляцию вещ ...

Компания ВиАТорг г. Белгород
Компания ООО "ВиАТорг" официальный представитель Харьковского завода транспортного оборудования в России (г. Белгород) поставляет по РФ и СНГ криобиологические сосуды (Дьюара). Предлагаем сотрудниче ...

Инокуляция эндофитом
Выделение спор эндофита из почвы Почву, содержащую тонкие корешки, замачивают в воде и раз­мешивают до разделения почвенных частиц, а затем процежи­вают через сито с отверстиями диаметром 500—60 ...

Активный ил
Переработка отходов с помощью активного ила, осуществляе­мая сложной смесью микроорганизмов, была предложена в 1914 г. Этот процесс более эффективен, чем фильтрация, и по­зволяет перерабатывать сточны ...

Биотехнология на основе растительных клеток
Растения издавна являются поставщиками химических соедине­ний для самых разных отраслей химической промышленности. Это не только такое сырье, как сахара, но и целый набор слож­ных вторичных метаболито ...

Переработка отходов сельского хозяйства в анаэробных условиях
При переработке органических отходов в анаэробных условиях образуется горючий газ, на 60% состоящий из метана, и твер­дый остаток, содержащий весь или почти весь азот и все другие питательные вещества ...

Итоги и перспективы
Новые разработки в области генетической теории и технологии .послужили основой для создания целого арсенала методов получения новых штаммов и путей модернизации технологиче­ских процессов. Хорошо осво ...

Хлеб и другие продукты
В Англии большинство хлебопродуктов производится по техно­логии Chorleywood Bread Process, но в других странах исполь­зуется много других технологий хлебопечения. Для производст­ва хлеба до сих пор пр ...

Dewar's flask
Dewar's flask Sir James Dewar © MARY EVANS PICTURE LIBRARY We have all been there. You are at a party where you know almost no one. Eventually you strike up a casual con ...

Современные инокуляты на твердых носителях
Rhizobium, выращенные на агаре или в жидкой среде, после высушивания на поверхности семян быстро погибают, да и са­ми культуры их нежизнестойки. Этих недостатков лишены ино­куляты на торфяной основе, ...

Переработка отходов сельского хозяйства
Еще в начале века было выявлено, что из навоза можно полу­чать горючий газ, а отходы использовать как удобрение. Пред­принимались попытки найти практическое применение этому про-дессу, но в целом ин ...

Будущий вклад биотехнологии в химическую промышленность
Источником сырья для различных отраслей химической промыш­ленности в обозримом будущем будут нефть и ее производные. Получаемые из них с малыми затратами продукты вряд ли по­требуется производить при ...

О мерах безопасности при производстве белка одноклеточных организмов
Микроорганизмы, традиционно используемые в пищевой про­мышленности, часто входят в состав конечного продукта (хотя доля их там обычно невелика). Как показывает опыт, безопас­ность этих продуктов не вы ...

ДЬЮАР (Dewar), Джеймс
20 сентября 1842 г. – 27 марта 1923 г. Джеймс Дьюар – шотландский физик и химик. Родился в г. Кинкардин-он-Форт, Шотландия. В 1861 г. окончил Эдинбургский университет. С 1867 г. стажиро ...

Отходы молочной промышленности сыворотка
Сыворотка является побочным продуктом сыроварения. Ее со­став зависит от типа используемого молока и вырабатываемо­го сыра. В высушенном или концентрированном виде сыворот­ка применялась в качестве ко ...


Применение микроорганизмов для экстракции металлов из минералов
Биотехнологии » Материалы и биотехнология


Вероятно, из всех аспектов микробиологической технологии меньше всего рекламируется и больше всего недооценивается применение микроорганизмов для экстракции металлов из минералов, для концентрирования и извлечения драгоценных ме­таллов из растворов, а также для получения новых промыш­ленных биоматериалов.

Микробное выщелачивание
Биотехнологии » Материалы и биотехнология


Методы извлечения меди из пород, содержащих минералы, пу­тем обработки их кислыми растворами используются уже много веков. Однако лишь в 50-е и 60-е гг. нашего столетия выясни­лось, что в получении металлов из минералов решающую роль играют бактерии. В 1947 г. Колмер и Хинкл выделили из шахт­ных дренажных вод бактерию Tiobaclllus ferrooxydans. Этот организм окислял двухвалентное железо и восстанавливал се-русодержащие соединения, а также, возможно, и некоторые металлы. Вскоре оказалось, что он участвует и в переводе медш из рудных минералов в раствор.

Выщелачивающие микроорганизмы
Биотехнологии » Материалы и биотехнология


В бактериальном выщелачивании участвуют следующие микро­организмы.
Thiobacillus ferrooxidans
Этот наиболее изученный из всех выщелачивающих организ­мов почти всегда можно выделить из среды, в которой проис­ходит окисление железа или минералов. Т. ferrooxidans, вероят­но, представлен в различных природных средах штаммами с температурными оптимумами от 10 до 30 °С. Максимальная .переносимая температура равна 37°С (или ниже).

Выщелачивание медных отвалов
Биотехнологии » Материалы и биотехнология


В настоящее время бактериальное выщелачивание, известное также как биогидрометаллургия или биоэкстрактивная метал­лургия, применяется в промышленных масштабах для перевода в растворимую форму меди и урана.

Выщелачивание урана
Биотехнологии » Материалы и биотехнология


Для экстракции урана бактерии применяются реже. Для того чтобы при выщелачивании урана можно было использовать микробиологическую технологию, руда и/или связанные с ней породы должны быть богаты сульфидными минералами и не слишком интенсивно поглощать кислоту. Бактериальное выще­лачивание урана применяли в восточных районах Канады для извлечения остаточного урана на уже выработанных площадях, а также из отвалов. В первом случае стенки и крыши забоев (при подземной выработке) промывали обычной или подкис­ленной водой.

Возможности применения бактериального выщелачивания
Биотехнологии » Материалы и биотехнология


Из-за огромных масштабов операций по выщелачиванию отва­лов активность бактерий, развивающуюся в ходе процесса, мож­но контролировать только в ограниченной степени. Для наибо­лее эффективного использования бактериального выщелачива­ния необходимо создавать такие инженерные схемы, которые позволяли бы осуществлять определенный контроль за актив­ностью микробов. Помимо выщелачивания отвалов в горноруд­ной промышленности существуют и другие средне- и высокотех­нологичные процедуры, при которых для экстракции металлов используются гидрометаллургические процессы (реакции, про­исходящие в воде). Эти технологии (выщелачивание in situ, чановое выщелачивание, кучное выщелачивание) применимы и к процессам бактериальной экстракции металлов.

Чановое выщелачивание
Биотехнологии » Материалы и биотехнология


Чановое выщелачивание используется в горнорудной про­мышленности для извлечения урана, золота, серебра и меди из окисных руд. Медные и урановые руды сильно измельчают и смешивают с растворами серной кислоты в больших емкостях (обычно размером 30X50X6 м) для перевода металла в раство­римую форму. Время выщелачивания, как правило, составляет несколько часов. Медь получают из кислого раствора электро­лизом, уран — ионообменным путем или экстракцией раствори­телем. Ферментация в чанах, а также в отстойниках с постоян­ным или предварительным перемешиванием может с успехом применяться для бактериального выщелачивания потому, что при этом легко контролировать факторы, влияющие на актив­ность микроорганизмов. К этим факторам относятся: размер частиц руды, ее качество, плотность пульпы (масса руды на единицу объема раствора), рН, содержание углекислого газа, кислорода, время удержания (время нахождения частиц в ре­акторе), температура и содержание питательных веществ. Хотя руда и не стерилизуется, возможен строгий контроль за видо­вым составом и количеством микроорганизмов. Чановое выще­лачивание создает предпосылки для использования специфиче­ских штаммов микроорганизмов (например, ацидотермофиль-ных бактерий) или микробов-выщелачивателей, полученных ме­тодами генетической инженерии. Вначале чановое выщелачива­ние применяли для руд с очень высоким содержанием металлов, однако эта технология может использоваться и в случае мате­риалов более низкого качества. При этом следует учитывать экономические и технологические факторы.

Экономическая значимость
Биотехнологии » Материалы и биотехнология


Хотя процессы биологического выщелачивания и представляют собой альтернативу обычным процессам экстракции, маловеро­ятно, что микробиологическая технология в ближайшем буду­щем заменит такой издавна существующий процесс, как вы­плавка металлов. Тем не менее, подобно другим гидрометал­лургическим процессам типа кислотного кучного выщелачивания урановых и медных окисных руд и выщелачивания золотонос­ных и серебряных руд с помощью цианидов, эффективные ме­тоды бактериального выщелачивания, несомненно, могут ока­зать заметное влияние на технологию переработки минераль­ного сырья.

Недостатки метода бактериального выщелачивания
Биотехнологии » Материалы и биотехнология


В предыдущих разделах в общих чертах говорилось о практи­ческом использовании бактериального выщелачивания в настоя­щее время и в перспективе. Однако немедленное практическое применение бактериального выщелачивания сдерживается по ряду причин. Главное препятствие заключается в том, что про­цесс еще плохо исследован как на опытных установках, так и в полевых условиях. Большинство экспериментов было прове­дено в полупроизводственных условиях. Поэтому трудно судить об экономической значимости процессов бактериального выще­лачивания и оценить технологические трудности, которые могут возникнуть при широкомасштабном промышленном использова­нии микробиологических процессов. Обычно применяемые про­цессы бактериального выщелачивания страдают также от не­достатка хорошей техники. Вполне вероятно, что создание спе­циальной системы оптимизации биологической активности силь­но расширило бы,использование бактерий при выщелачивании. К параметрам, которые должны при этом учитываться, отно­сятся температура, питательные вещества, содержание кисло­рода и углекислого газа, размер частиц, качество минерала, плотность пульпы (масса частиц на единицу объема выщела­чивающего раствора), скорость протекания выщелачивающего раствора и рН.

Превращение, накопление и иммобилизация металлов микроорганизмами
Биотехнологии » Материалы и биотехнология


Побуждаемая строгими законами об охране окружающей сре­ды, необходимостью извлечения ценных металлов и очистки промышленных вод для их повторного использования, горно­рудная промышленность все шире применяет новые физико-хи­мические технологии для очистки сточных вод. Слишком часто эти технологии оказываются крайне дорогостоящими и неэф­фективными. Все больше фирм приходят к убеждению, что для очистки сточных вод можно использовать биологические про­цессы, причем эти процессы могут быть более экономичными и эффективными, чем обычно применяемые методы. Некоторые промышленные предприятия широко используют эти процессы для удаления из рудничных сточных вод примесей неорганиче­ских ионов.

Перевод в летучую форму
Биотехнологии » Материалы и биотехнология


В настоящее время твердо установлено, что многие микроорга-лизмы способны метилировать ртуть. Это приводит к превра­щению ионов Hg(II) из осадка или раствора в метилртутные соединения (например, диметилртуть), которые уходят в атмо­сферу. Такое превращение может быть важным этапом в при­родном круговороте ртути. Возможно также микробиологиче­ское метилирование других металлов, например мышьяка, теллура и селена, которые таким способом удаляются из почвы и воды. Подобные процессы могут играть важную роль в при­родных циклах этих металлов и иметь значение, например, при образовании обедненных селеном почв или при удалении ток­сичных металлов при обработке сточных вод. Как бы то ни было биотехнологические исследования, направленные на умень­шение или увеличение подобной микробной активности, пред­ставляются весьма перспективными.

Внеклеточное осаждение
Биотехнологии » Материалы и биотехнология


Металлы могут иммобилизовываться и накапливаться в почвах и в осадочных породах за счет связывания с продуктами мета­болизма микробов или с накапливающимися органическими остатками. Эти процессы издавна использовались человеком при очистке сточных и промышленных вод. При обычной очистке сточных вод образующийся ил содержит целый набор ме­таллов, перешедших из воды. Живые клетки и органические остатки, присутствующие в отстойниках или проточных прудах, будут накапливать эти металлы, которые впоследствии оказы­ваются в осадках. Для удаления металлов из промышленных стоков или из рудничных вод в горнорудной промышленности используют пруды, в которых «цветут» водоросли (их усилен­ный рост стимулируется органическими или минеральными пи­тательными веществами, которые содержатся в воде).

Внеклеточное комплексообразование
Биотехнологии » Материалы и биотехнология


Некоторые микроорганизмы синтезируют специфические хими­ческие соединения, обладающие высоким сродством к опреде­ленным металлам. Наиболее известны соединения, образующие-комплексы с железом. Молибден, ванадий и другие микроэле­менты, участвующие в метаболизме бактерий, также способны поступать в клетку в форме внеклеточных комплексов. Хотя эти комплексообразующие соединения не осаждают металлы, на их основе может быть создана новая технология извлечения отдельных металлов из растворов.

Внутри- и внеклеточное накопление металлов микроорганизмами
Биотехнологии » Материалы и биотехнология


О прямом накоплении металлов микроорганизмами уже шла речь в предыдущих разделах. Теперь мы рассмотрим лежащие .в основе этого явления биохимические процессы и возможности их использования в прикладной микробиологии. Идея примене­ния микроорганизмов для извлечения металлов из растворов издавна представлялась привлекательной не только для очистки .воды, но и для получения ценных или экономически важных металлов. Возможность эксплуатации такого процесса концент­рирования несомненна, поскольку хорошо известна способность живых организмов извлекать металлы из разбавленных раство­ров и накапливать их. Многие растения и животные концентри­руют элементы из окружающей их среды в миллионы раз.

Поглощение некоторых металлов дрожжами и бактериями
Биотехнологии » Материалы и биотехнология


Микроорганизмы способны концентрировать металлы одним из следующих способов:
1) внеклеточное накопление участву­ющих или не участвующих в метаболизме металлов путем свя­зывания или осаждения их на клеточной стенке или мембранах;
2) внутриклеточное накопление нужных для метаболизма ме­таллов (например, К, Fe, Mg, Mo, следы Си, Ni);
3) внутри­клеточное накопление относительно больших количеств несу­щественных для метаболизма металлов (например, Со, Ni, Си, Cd, Ag) в основном с помощью механизмов, служащих для накопления существенных для метаболизма металлов.

Биополимеры
Биотехнологии » Материалы и биотехнология


Термин «биополимеры» относится ко многим высокомолекуляр­ным соединениям (например, к нуклеиновым кислотам, полиса­харидам и липидам), синтезируемым самыми разными организ­мами. В этом разделе мы особенно подробно рассмотрим обра­зование микроорганизмами полисахаридов и поли-3-гидрокси-бутирата. Эти биополимеры часто синтезируются в ответ на специфические условия среды в тех случаях, когда соединения углерода не являются фактором, лимитирующим рост, и, следо­вательно, могут служить резервным источником углерода и/или энергии.

Полисахариды
Биотехнологии » Материалы и биотехнология


Полисахариды служат источником энергии и структурными компонентами клеточных стенок и внеклеточных капсул. Мно­гие из этих полимеров, имеющие коммерческую ценность как промышленные клеи, были получены из растительных тканей (экстракты семян и морских водорослей, древесные экссудаты и т. п.). Способность таких полисахаридов изменять реологиче­ские свойства воды, вызывая образование геля и влияя на свойства водных растворов в потоке, привели к их широкому-промышленному использованию в самых различных ситуациях. Полисахаридные гидроколлоиды часто применяются в пищевой,, фармацевтической, парфюмерно-косметической, нефтяной, бу­мажной и текстильной промышленности. Например, из красных, водорослей производят в промышленных масштабах карраге-нан и агар, а из бурых — альгинаты. Однако получение полиса­харидов из растений и водорослей обладает своими недостат­ками.

Образование полисахаридов при брожении
Биотехнологии » Материалы и биотехнология


Для образования большого количества   полимера   требуется легкодоступный и дешевый источник  углерода.   Ферментация позволяет культивировать организм-продуцент в строго опреде­ленных условиях среды, контролируя, таким образом, процесс «биосинтеза и влияя на тип продукта и его свойства. Специфи­чески изменяя условия роста, можно менять   молекулярную массу и структуру образующегося полимера. В ряде случаев максимальная скорость синтеза полисахарида достигается    в логарифмической стадии роста, в других — в поздней логариф­мической или в начале стационарной.   Обычно   углеводными субстратами служат глюкоза и сахароза, хотя полисахариды могут образовываться и при росте микроорганизмов на н-алканах( C12-61), керосине, метаноле, метане, этаноле, глицероле и зтиленгликоле.

Микробные полисахариды: свойства, применение и коммерческая ценность
Биотехнологии » Материалы и биотехнология


Ксантан   [келтрол   (Keltrol),   келзан   (Kelzan),   Родогель (Rhodogel)]
Ксантан синтезируется Xanthomonas campestris при росте на глюкозе, сахарозе, крахмале, кукурузной декстрозе и барде. В качестве источников углерода могут использоваться промыш­ленные отходы, например сыворотка, образующаяся при выра­ботке творога. Этот полимер, имеющий аллюлозный остов, по­строен из повторяющихся пятичленных блоков, содержащих D-глюкозу, D-маннозу, D-глюкуроновую кислоту; к некоторым из них присоединены остатки уксусной и пировиноградной кислот. Мол. масса его варьирует от 2-106 до 15-106.

Декстран
Биотехнологии » Материалы и биотехнология


Декстран— это α-D-глюкан, синтезируемый самыми разными грамположительными и грамотрицательными бактериями, та­кими как Aerobacter spp., Streptococcus bovis и S. viridans, а также Leuconostoc mesenteroides. В промышленности этот полимер получают выращиванием последнего из перечисленных микроорганизмов на сахарозе. Большинство полисахаридов яв­ляются продуктами внутриклеточного синтеза, однако при об­разовании декстрана субстрат не проникает в клетку. Декстраны классифицируют в зависимости от относительного содержа­ния каждого из трех имеющихся типов связей (α-1->3, α-1->4 и α-1->6), а также по растворимости в воде. Высокомо­лекулярный полимер осаждают органическими растворителями, л затем разрушают ферментативным путем (используя экзо-и эндодекстраназы) с помощью гидролиза слабой кислотой либо нагреванием до получения продукта с нужной молекуляр­ной массой.

ООО "ВиАТорг" © 2009
Rambler's Top100 Рейтинг@Mail.ru