ПРОДУКЦИЯ
Cосуды криобиологические (Сосуды Дьюара)
КОНТАКТЫ
ООО "ВиАТорг", г. Белгород
Компания "ВиАТорг" официальный представитель Харьковского завода транспортного оборудования в России
поставляет криобиологические сосуды (Сосуды Дьюара) по России и странам СНГ. У нас Вы можете купить Сосуды Дьюара недорого
E-mail: viatorg@yandex.ru
СТАТЬИ
Биотехнологии, принципы и применение
Популярное
Интересные факты криобиологии
Слияние протопластов грибовОбразование гибридов грибов с помощью слияния протопластов изучалось очень активно; этот метод нашел применение в промышленности при создании штаммов Cephalosporium acremonium, для которых характерны ... Новейшие успехи биотехнологии проявляются в практической медицине Особенно ярко новейшие успехи биотехнологии проявляются в практической медицине главным образом потому, что их распространение из лабораторий в промышленность, а затем и в клинику происходит в послед ... Примеры биологического контроляАнтагонистическое действие Trichoderma Об антагонистической активности гриба Trichoderma известно давно. Если внести во влажную почву значительное количество Trichoderma lignorum, то он подавит выпрев ... Биотехнология на основе растительных клетокРастения издавна являются поставщиками химических соединений для самых разных отраслей химической промышленности. Это не только такое сырье, как сахара, но и целый набор сложных вторичных метаболито ... ЛитератураAtkinson В., Mavituna F. (1983). Biochemical Engineering and Biotechnology Handbook, Macmillan, Byfleet, Surrey. Brenner S., Hartley B. S., Rodgers P. J. (eds.) (1980). New Horizons in Industrial Mic ... Окружающая средаПо мере того как увеличивается население Земли и развивается промышленность, все более серьезной становится проблема охраны окружающей среды. В решении такого рода задач биотехнология будет играть в ... ЭнергобалансОбщий баланс энергии как при производстве спирта, так и при анаэробной переработке может быть слабо положительным или даже отрицательным, поскольку при производстве сырья, его переработке, сортировке, ... КурдланКурдлан —это а-1,3-глюкан, синтезируемый Alcaligenes faecalis, var. myxogenes, штамм 10СЗ. При нагревании до температуры выше 54 °С происходит необратимое гелеобразование этого полимера; прочн ... Инокуляция бактериями RhizobiumНаиболее простой способ инокуляции основан на использовании почвы, взятой с полей, где выбранная для выращивания культура бобовых растет хорошо. Этот способ вполне пригоден и широко применялся в конц ... Микробный альгинатИсточником альгинатов издавна служили морские водоросли (например, Laminaria spp.), однако по природе своей этот источник непостоянен. Среди бактерий близкие к альгинату гете-рополисахариды образуют ... Организация промышленного производства антибиотиковСледующим важным этапом в развитии биотехнологии хозяйственно ценных веществ была организация промышленного производства антибиотиков. Отправной точкой здесь послужило открытие Флеммингом, Флори и Ч ... Dewar's flask
Dewar's flask
Sir James Dewar
© MARY EVANS PICTURE LIBRARY
We have all been there. You are at a party where you know almost no one. Eventually you strike up a casual con ... Слияние протопластовС целью преодоления преград для генетического обмена, существующих в обычных системах скрещивания, был разработан метод слияния протопластов (клеток с удаленными клеточными оболочками). Этот метод п ... Подходы к усовершенствованию производства микробных полисахаридов
Использование микроорганизмов для получения промышленно ценных полисахаридов можно сделать более эффективным с помощью следующих усовершенствований:
1) увеличения скорости образования полисахаридо ... Моноклональные антителаОдин из результатов использования метода слияния клеток млекопитающих чрезвычайно быстро нашел применение в биотехнологии: это линии клеток, полученных при гибридизации с участием клеток миеломы (так ... Продукты животного происхожденияБольшинство продуктов животного происхождения, чувствительных к биоповреждениям, имеет белковую природу. К ним относятся шкуры, шерсть и клеи. Бактерии и грибы часто оказывают неблагоприятное воздей ... ПивоДля осуществления спиртового брожения прежде всего необходимо, чтобы в пивоваренном сырье образовался сахар. Традиционным источником нужных для этого полисахаридов всегда был ячмень, но в качестве д ... Древесина как сырье для производства биотопливаКак сырье для производства биотоплива древесина обладает рядом достоинств: выход продукции в пересчете на гектар очень высок из древесины мы получаем значительно больше биомассы, чем из любого другог ... Экономические и коммерческие аспекты биотехнологииБиотехнология (в широком смысле этого термина) уже сегодня имеет большое экономическое и социальное значение. Главная цель этого раздела книги — проанализировать ее возможное влияние на экономик ... Биологическая переработка промышленных отходовПромышленные отходы можно в первом приближении разделить на две категории:
1) отходы производств, основанных на использовании биологических процессов (производство пищевых продуктов, напитков, ферм ...
|
 |
|
 |
Вероятно, из всех аспектов микробиологической технологии меньше всего рекламируется и больше всего недооценивается применение микроорганизмов для экстракции металлов из минералов, для концентрирования и извлечения драгоценных металлов из растворов, а также для получения новых промышленных биоматериалов. |
|
 |
|
 |
Методы извлечения меди из пород, содержащих минералы, путем обработки их кислыми растворами используются уже много веков. Однако лишь в 50-е и 60-е гг. нашего столетия выяснилось, что в получении металлов из минералов решающую роль играют бактерии. В 1947 г. Колмер и Хинкл выделили из шахтных дренажных вод бактерию Tiobaclllus ferrooxydans. Этот организм окислял двухвалентное железо и восстанавливал се-русодержащие соединения, а также, возможно, и некоторые металлы. Вскоре оказалось, что он участвует и в переводе медш из рудных минералов в раствор. |
|
 |
|
 |
В бактериальном выщелачивании участвуют следующие микроорганизмы. Thiobacillus ferrooxidans Этот наиболее изученный из всех выщелачивающих организмов почти всегда можно выделить из среды, в которой происходит окисление железа или минералов. Т. ferrooxidans, вероятно, представлен в различных природных средах штаммами с температурными оптимумами от 10 до 30 °С. Максимальная .переносимая температура равна 37°С (или ниже). |
|
 |
|
 |
В настоящее время бактериальное выщелачивание, известное также как биогидрометаллургия или биоэкстрактивная металлургия, применяется в промышленных масштабах для перевода в растворимую форму меди и урана. |
|
 |
|
 |
Для экстракции урана бактерии применяются реже. Для того чтобы при выщелачивании урана можно было использовать микробиологическую технологию, руда и/или связанные с ней породы должны быть богаты сульфидными минералами и не слишком интенсивно поглощать кислоту. Бактериальное выщелачивание урана применяли в восточных районах Канады для извлечения остаточного урана на уже выработанных площадях, а также из отвалов. В первом случае стенки и крыши забоев (при подземной выработке) промывали обычной или подкисленной водой. |
|
 |
|
 |
Из-за огромных масштабов операций по выщелачиванию отвалов активность бактерий, развивающуюся в ходе процесса, можно контролировать только в ограниченной степени. Для наиболее эффективного использования бактериального выщелачивания необходимо создавать такие инженерные схемы, которые позволяли бы осуществлять определенный контроль за активностью микробов. Помимо выщелачивания отвалов в горнорудной промышленности существуют и другие средне- и высокотехнологичные процедуры, при которых для экстракции металлов используются гидрометаллургические процессы (реакции, происходящие в воде). Эти технологии (выщелачивание in situ, чановое выщелачивание, кучное выщелачивание) применимы и к процессам бактериальной экстракции металлов. |
|
 |
|
 |
Чановое выщелачивание используется в горнорудной промышленности для извлечения урана, золота, серебра и меди из окисных руд. Медные и урановые руды сильно измельчают и смешивают с растворами серной кислоты в больших емкостях (обычно размером 30X50X6 м) для перевода металла в растворимую форму. Время выщелачивания, как правило, составляет несколько часов. Медь получают из кислого раствора электролизом, уран — ионообменным путем или экстракцией растворителем. Ферментация в чанах, а также в отстойниках с постоянным или предварительным перемешиванием может с успехом применяться для бактериального выщелачивания потому, что при этом легко контролировать факторы, влияющие на активность микроорганизмов. К этим факторам относятся: размер частиц руды, ее качество, плотность пульпы (масса руды на единицу объема раствора), рН, содержание углекислого газа, кислорода, время удержания (время нахождения частиц в реакторе), температура и содержание питательных веществ. Хотя руда и не стерилизуется, возможен строгий контроль за видовым составом и количеством микроорганизмов. Чановое выщелачивание создает предпосылки для использования специфических штаммов микроорганизмов (например, ацидотермофиль-ных бактерий) или микробов-выщелачивателей, полученных методами генетической инженерии. Вначале чановое выщелачивание применяли для руд с очень высоким содержанием металлов, однако эта технология может использоваться и в случае материалов более низкого качества. При этом следует учитывать экономические и технологические факторы. |
|
 |
|
 |
Хотя процессы биологического выщелачивания и представляют собой альтернативу обычным процессам экстракции, маловероятно, что микробиологическая технология в ближайшем будущем заменит такой издавна существующий процесс, как выплавка металлов. Тем не менее, подобно другим гидрометаллургическим процессам типа кислотного кучного выщелачивания урановых и медных окисных руд и выщелачивания золотоносных и серебряных руд с помощью цианидов, эффективные методы бактериального выщелачивания, несомненно, могут оказать заметное влияние на технологию переработки минерального сырья. |
|
 |
|
 |
В предыдущих разделах в общих чертах говорилось о практическом использовании бактериального выщелачивания в настоящее время и в перспективе. Однако немедленное практическое применение бактериального выщелачивания сдерживается по ряду причин. Главное препятствие заключается в том, что процесс еще плохо исследован как на опытных установках, так и в полевых условиях. Большинство экспериментов было проведено в полупроизводственных условиях. Поэтому трудно судить об экономической значимости процессов бактериального выщелачивания и оценить технологические трудности, которые могут возникнуть при широкомасштабном промышленном использовании микробиологических процессов. Обычно применяемые процессы бактериального выщелачивания страдают также от недостатка хорошей техники. Вполне вероятно, что создание специальной системы оптимизации биологической активности сильно расширило бы,использование бактерий при выщелачивании. К параметрам, которые должны при этом учитываться, относятся температура, питательные вещества, содержание кислорода и углекислого газа, размер частиц, качество минерала, плотность пульпы (масса частиц на единицу объема выщелачивающего раствора), скорость протекания выщелачивающего раствора и рН. |
|
 |
|
 |
Побуждаемая строгими законами об охране окружающей среды, необходимостью извлечения ценных металлов и очистки промышленных вод для их повторного использования, горнорудная промышленность все шире применяет новые физико-химические технологии для очистки сточных вод. Слишком часто эти технологии оказываются крайне дорогостоящими и неэффективными. Все больше фирм приходят к убеждению, что для очистки сточных вод можно использовать биологические процессы, причем эти процессы могут быть более экономичными и эффективными, чем обычно применяемые методы. Некоторые промышленные предприятия широко используют эти процессы для удаления из рудничных сточных вод примесей неорганических ионов. |
|
 |
|
 |
В настоящее время твердо установлено, что многие микроорга-лизмы способны метилировать ртуть. Это приводит к превращению ионов Hg(II) из осадка или раствора в метилртутные соединения (например, диметилртуть), которые уходят в атмосферу. Такое превращение может быть важным этапом в природном круговороте ртути. Возможно также микробиологическое метилирование других металлов, например мышьяка, теллура и селена, которые таким способом удаляются из почвы и воды. Подобные процессы могут играть важную роль в природных циклах этих металлов и иметь значение, например, при образовании обедненных селеном почв или при удалении токсичных металлов при обработке сточных вод. Как бы то ни было биотехнологические исследования, направленные на уменьшение или увеличение подобной микробной активности, представляются весьма перспективными. |
|
 |
|
 |
Металлы могут иммобилизовываться и накапливаться в почвах и в осадочных породах за счет связывания с продуктами метаболизма микробов или с накапливающимися органическими остатками. Эти процессы издавна использовались человеком при очистке сточных и промышленных вод. При обычной очистке сточных вод образующийся ил содержит целый набор металлов, перешедших из воды. Живые клетки и органические остатки, присутствующие в отстойниках или проточных прудах, будут накапливать эти металлы, которые впоследствии оказываются в осадках. Для удаления металлов из промышленных стоков или из рудничных вод в горнорудной промышленности используют пруды, в которых «цветут» водоросли (их усиленный рост стимулируется органическими или минеральными питательными веществами, которые содержатся в воде). |
|
 |
|
 |
Некоторые микроорганизмы синтезируют специфические химические соединения, обладающие высоким сродством к определенным металлам. Наиболее известны соединения, образующие-комплексы с железом. Молибден, ванадий и другие микроэлементы, участвующие в метаболизме бактерий, также способны поступать в клетку в форме внеклеточных комплексов. Хотя эти комплексообразующие соединения не осаждают металлы, на их основе может быть создана новая технология извлечения отдельных металлов из растворов. |
|
 |
|
 |
О прямом накоплении металлов микроорганизмами уже шла речь в предыдущих разделах. Теперь мы рассмотрим лежащие .в основе этого явления биохимические процессы и возможности их использования в прикладной микробиологии. Идея применения микроорганизмов для извлечения металлов из растворов издавна представлялась привлекательной не только для очистки .воды, но и для получения ценных или экономически важных металлов. Возможность эксплуатации такого процесса концентрирования несомненна, поскольку хорошо известна способность живых организмов извлекать металлы из разбавленных растворов и накапливать их. Многие растения и животные концентрируют элементы из окружающей их среды в миллионы раз. |
|
 |
|
 |
Микроорганизмы способны концентрировать металлы одним из следующих способов:
1) внеклеточное накопление участвующих или не участвующих в метаболизме металлов путем связывания или осаждения их на клеточной стенке или мембранах;
2) внутриклеточное накопление нужных для метаболизма металлов (например, К, Fe, Mg, Mo, следы Си, Ni);
3) внутриклеточное накопление относительно больших количеств несущественных для метаболизма металлов (например, Со, Ni, Си, Cd, Ag) в основном с помощью механизмов, служащих для накопления существенных для метаболизма металлов. |
|
 |
|
 |
Термин «биополимеры» относится ко многим высокомолекулярным соединениям (например, к нуклеиновым кислотам, полисахаридам и липидам), синтезируемым самыми разными организмами. В этом разделе мы особенно подробно рассмотрим образование микроорганизмами полисахаридов и поли-3-гидрокси-бутирата. Эти биополимеры часто синтезируются в ответ на специфические условия среды в тех случаях, когда соединения углерода не являются фактором, лимитирующим рост, и, следовательно, могут служить резервным источником углерода и/или энергии. |
|
 |
|
 |
Полисахариды служат источником энергии и структурными компонентами клеточных стенок и внеклеточных капсул. Многие из этих полимеров, имеющие коммерческую ценность как промышленные клеи, были получены из растительных тканей (экстракты семян и морских водорослей, древесные экссудаты и т. п.). Способность таких полисахаридов изменять реологические свойства воды, вызывая образование геля и влияя на свойства водных растворов в потоке, привели к их широкому-промышленному использованию в самых различных ситуациях. Полисахаридные гидроколлоиды часто применяются в пищевой,, фармацевтической, парфюмерно-косметической, нефтяной, бумажной и текстильной промышленности. Например, из красных, водорослей производят в промышленных масштабах карраге-нан и агар, а из бурых — альгинаты. Однако получение полисахаридов из растений и водорослей обладает своими недостатками. |
|
 |
|
 |
Для образования большого количества полимера требуется легкодоступный и дешевый источник углерода. Ферментация позволяет культивировать организм-продуцент в строго определенных условиях среды, контролируя, таким образом, процесс «биосинтеза и влияя на тип продукта и его свойства. Специфически изменяя условия роста, можно менять молекулярную массу и структуру образующегося полимера. В ряде случаев максимальная скорость синтеза полисахарида достигается в логарифмической стадии роста, в других — в поздней логарифмической или в начале стационарной. Обычно углеводными субстратами служат глюкоза и сахароза, хотя полисахариды могут образовываться и при росте микроорганизмов на н-алканах( C12-61), керосине, метаноле, метане, этаноле, глицероле и зтиленгликоле. |
|
 |
|
 |
Ксантан [келтрол (Keltrol), келзан (Kelzan), Родогель (Rhodogel)] Ксантан синтезируется Xanthomonas campestris при росте на глюкозе, сахарозе, крахмале, кукурузной декстрозе и барде. В качестве источников углерода могут использоваться промышленные отходы, например сыворотка, образующаяся при выработке творога. Этот полимер, имеющий аллюлозный остов, построен из повторяющихся пятичленных блоков, содержащих D-глюкозу, D-маннозу, D-глюкуроновую кислоту; к некоторым из них присоединены остатки уксусной и пировиноградной кислот. Мол. масса его варьирует от 2-106 до 15-106. |
|
 |
|
 |
Декстран— это α-D-глюкан, синтезируемый самыми разными грамположительными и грамотрицательными бактериями, такими как Aerobacter spp., Streptococcus bovis и S. viridans, а также Leuconostoc mesenteroides. В промышленности этот полимер получают выращиванием последнего из перечисленных микроорганизмов на сахарозе. Большинство полисахаридов являются продуктами внутриклеточного синтеза, однако при образовании декстрана субстрат не проникает в клетку. Декстраны классифицируют в зависимости от относительного содержания каждого из трех имеющихся типов связей (α-1->3, α-1->4 и α-1->6), а также по растворимости в воде. Высокомолекулярный полимер осаждают органическими растворителями, л затем разрушают ферментативным путем (используя экзо-и эндодекстраназы) с помощью гидролиза слабой кислотой либо нагреванием до получения продукта с нужной молекулярной массой. |
|
|