О КОМПАНИИ
ООО "ВиАТорг"
г. Белгород
ПРОДУКЦИЯ
Cосуды Дьюара криобиологические
КОНТАКТЫ
Связь с нами

ПРОДУКЦИЯ
Cосуды криобиологические (Сосуды Дьюара)



КОНТАКТЫ
ООО "ВиАТорг", г. Белгород
Компания "ВиАТорг" официальный представитель Харьковского завода транспортного оборудования в России поставляет криобиологические сосуды (Сосуды Дьюара) по России и странам СНГ.
У нас Вы можете купить Сосуды Дьюара недорого

E-mail:viatorg@yandex.ru

СТАТЬИ
Биотехнологии, принципы и применение


Партнеры
Объявления
web студия

Популярное
Интересные факты криобиологии
Моноклональные антитела
Один из результатов использования метода слияния клеток млекопитающих чрезвычайно быстро нашел применение в био­технологии: это линии клеток, полученных при гибридизации с участием клеток миеломы (так ...

Важнейшие гены плазмид
Для биотехнологии особенно интересны те гены плазмид, в ко­торых закодирована способность к фиксации азота и деграда­ции органических соединений, а также факторы вирулентности патогенных бактерий.

Антибиотики
Можно считать, что клиническая биотехнология зародилась с началом промышленного производства пенициллина в 40-х гг. и его использования в терапии. По-видимому, применение этого первого природного пени ...

Уксус
Хотя уксус и не принадлежит к алкогольным напиткам, мы ре­шили остановиться на его производстве в этом разделе, посколь­ку одна из двух стадий его получения включает спиртовое бро­жение. Уксус — ...

ЛИТЕРАТУРА
Callely A. G., Forster С. P., Stafford D. A. (eds.), 1977. Treatment of Industrial Surfactants, pp. 283—327, Hodder ans Stoughton, London. Chafer K. W. A.,' Somerwille M. J. (eds.), 1978. The O ...

Материалы, подверженные биоповреждениям
При описании биоповреждений легче всего проводить их клас­сификацию по типу продукта. Однако это оказывается затруд­нительным, если мы имеем дело со сложными продуктами, на­пример с красками, где встр ...

Водоросли и водные растения
Потенциальный урожай биомассы у пресноводных и морских растений весьма велик, но чрезвычайно большое содержание воды во многих этих растениях при сборе и сложность сушки на солнце препятствуют использ ...

Слияние протопластов грибов
Образование гибридов грибов с помощью слияния протопластов изучалось очень активно; этот метод нашел применение в про­мышленности при создании штаммов Cephalosporium acremonium, для которых характерны ...

Участие микробных сообществ в биодеградации ксенобиотиков
Можно выделить стабильные сообщества, в которых взаимо­действия между отдельными его членами дает им ряд преиму­ществ, в результате чего такая ассоциация становится более эффективной, чем отдельно взя ...

Металлы и камни
Строгих доказательств связи между активностью определенных микроорганизмов и процессами коррозии не существует. Воз­можны три механизма коррозии: образование корродирующих веществ (кислоты, сероводоро ...

Медицина
В последнее время все мы имели возможность убедиться, что благодаря применению технологии рекомбинантных ДНК были достигнуты крупные успехи в медицине. Многие фирмы, например, весьма преуспели в разра ...

Технология рекомбинантных ДНК (Инсулин)
Общеизвестно, что разработка методов изменения генетическо­го аппарата клеток, позволяющих вводить в них чужеродные гены, клонировать их, экспрессировать и получать нужные про­дукты, совершила настоящ ...

Традиционные белковые продукты, получаемые путем ферментации
Микроорганизмы начали использовать в производстве белковых продуктов задолго до возникновения микробиологии. Достаточ­но упомянуть всевозможные разновидности сыра, а также про­дукты, получаемые путем ...

Отходы молочной промышленности сыворотка
Сыворотка является побочным продуктом сыроварения. Ее со­став зависит от типа используемого молока и вырабатываемо­го сыра. В высушенном или концентрированном виде сыворот­ка применялась в качестве ко ...

Виннокаменная кислота
Виннокаменная кислота является обычным побочным про­дуктом виноделия. Однако ее можно получать и путем микроб-уной трансформации 5-оксоглюконовой кислоты. Штаммы, способные превращать глюкозу в 5-оксо ...

Продукты гидролиза крахмала
Крахмал трех основных поступающих на рынок сортов получа­ют по обычной технологии. Способы производства кукурузного, пшеничного и картофельного крахмала были неоднократно и подробно описаны (см. разд. ...

Этиловый спирт
Производство этилового спирта при помощи дрожжей основана на давно устоявшейся технологии. Для полу­чения топливного спирта необходимо осуществить ряд процес­сов (рис. 2.5): подготовить сырье, провест ...

Корма для животных
В Англии в результате человеческой деятельности образуется 25*109 кг отходов в год. Если учесть, что при интенсивном жи­вотноводстве образуется еще 180*109 кг отходов, то становится ясно, что при пере ...

Геллановая камедь
Геллан — полисахарид, состоящий из остатков глюкозы, рамнозы, глюкуроновой кислоты и содержащий О-ацетильные группы (3—4,5%), — получают методом аэробной ферментации при участии Pseu ...

Созревание
Если необходимо, на следующем этапе сыры отправляют на созревание или выдержку. К этой группе сыров относятся чед­дер и швейцарский; сливочные сыры не выдерживают. Созре­вание происходит в специальных ...


Применение микроорганизмов для экстракции металлов из минералов
Биотехнологии » Материалы и биотехнология


Вероятно, из всех аспектов микробиологической технологии меньше всего рекламируется и больше всего недооценивается применение микроорганизмов для экстракции металлов из минералов, для концентрирования и извлечения драгоценных ме­таллов из растворов, а также для получения новых промыш­ленных биоматериалов.

Микробное выщелачивание
Биотехнологии » Материалы и биотехнология


Методы извлечения меди из пород, содержащих минералы, пу­тем обработки их кислыми растворами используются уже много веков. Однако лишь в 50-е и 60-е гг. нашего столетия выясни­лось, что в получении металлов из минералов решающую роль играют бактерии. В 1947 г. Колмер и Хинкл выделили из шахт­ных дренажных вод бактерию Tiobaclllus ferrooxydans. Этот организм окислял двухвалентное железо и восстанавливал се-русодержащие соединения, а также, возможно, и некоторые металлы. Вскоре оказалось, что он участвует и в переводе медш из рудных минералов в раствор.

Выщелачивающие микроорганизмы
Биотехнологии » Материалы и биотехнология


В бактериальном выщелачивании участвуют следующие микро­организмы.
Thiobacillus ferrooxidans
Этот наиболее изученный из всех выщелачивающих организ­мов почти всегда можно выделить из среды, в которой проис­ходит окисление железа или минералов. Т. ferrooxidans, вероят­но, представлен в различных природных средах штаммами с температурными оптимумами от 10 до 30 °С. Максимальная .переносимая температура равна 37°С (или ниже).

Выщелачивание медных отвалов
Биотехнологии » Материалы и биотехнология


В настоящее время бактериальное выщелачивание, известное также как биогидрометаллургия или биоэкстрактивная метал­лургия, применяется в промышленных масштабах для перевода в растворимую форму меди и урана.

Выщелачивание урана
Биотехнологии » Материалы и биотехнология


Для экстракции урана бактерии применяются реже. Для того чтобы при выщелачивании урана можно было использовать микробиологическую технологию, руда и/или связанные с ней породы должны быть богаты сульфидными минералами и не слишком интенсивно поглощать кислоту. Бактериальное выще­лачивание урана применяли в восточных районах Канады для извлечения остаточного урана на уже выработанных площадях, а также из отвалов. В первом случае стенки и крыши забоев (при подземной выработке) промывали обычной или подкис­ленной водой.

Возможности применения бактериального выщелачивания
Биотехнологии » Материалы и биотехнология


Из-за огромных масштабов операций по выщелачиванию отва­лов активность бактерий, развивающуюся в ходе процесса, мож­но контролировать только в ограниченной степени. Для наибо­лее эффективного использования бактериального выщелачива­ния необходимо создавать такие инженерные схемы, которые позволяли бы осуществлять определенный контроль за актив­ностью микробов. Помимо выщелачивания отвалов в горноруд­ной промышленности существуют и другие средне- и высокотех­нологичные процедуры, при которых для экстракции металлов используются гидрометаллургические процессы (реакции, про­исходящие в воде). Эти технологии (выщелачивание in situ, чановое выщелачивание, кучное выщелачивание) применимы и к процессам бактериальной экстракции металлов.

Чановое выщелачивание
Биотехнологии » Материалы и биотехнология


Чановое выщелачивание используется в горнорудной про­мышленности для извлечения урана, золота, серебра и меди из окисных руд. Медные и урановые руды сильно измельчают и смешивают с растворами серной кислоты в больших емкостях (обычно размером 30X50X6 м) для перевода металла в раство­римую форму. Время выщелачивания, как правило, составляет несколько часов. Медь получают из кислого раствора электро­лизом, уран — ионообменным путем или экстракцией раствори­телем. Ферментация в чанах, а также в отстойниках с постоян­ным или предварительным перемешиванием может с успехом применяться для бактериального выщелачивания потому, что при этом легко контролировать факторы, влияющие на актив­ность микроорганизмов. К этим факторам относятся: размер частиц руды, ее качество, плотность пульпы (масса руды на единицу объема раствора), рН, содержание углекислого газа, кислорода, время удержания (время нахождения частиц в ре­акторе), температура и содержание питательных веществ. Хотя руда и не стерилизуется, возможен строгий контроль за видо­вым составом и количеством микроорганизмов. Чановое выще­лачивание создает предпосылки для использования специфиче­ских штаммов микроорганизмов (например, ацидотермофиль-ных бактерий) или микробов-выщелачивателей, полученных ме­тодами генетической инженерии. Вначале чановое выщелачива­ние применяли для руд с очень высоким содержанием металлов, однако эта технология может использоваться и в случае мате­риалов более низкого качества. При этом следует учитывать экономические и технологические факторы.

Экономическая значимость
Биотехнологии » Материалы и биотехнология


Хотя процессы биологического выщелачивания и представляют собой альтернативу обычным процессам экстракции, маловеро­ятно, что микробиологическая технология в ближайшем буду­щем заменит такой издавна существующий процесс, как вы­плавка металлов. Тем не менее, подобно другим гидрометал­лургическим процессам типа кислотного кучного выщелачивания урановых и медных окисных руд и выщелачивания золотонос­ных и серебряных руд с помощью цианидов, эффективные ме­тоды бактериального выщелачивания, несомненно, могут ока­зать заметное влияние на технологию переработки минераль­ного сырья.

Недостатки метода бактериального выщелачивания
Биотехнологии » Материалы и биотехнология


В предыдущих разделах в общих чертах говорилось о практи­ческом использовании бактериального выщелачивания в настоя­щее время и в перспективе. Однако немедленное практическое применение бактериального выщелачивания сдерживается по ряду причин. Главное препятствие заключается в том, что про­цесс еще плохо исследован как на опытных установках, так и в полевых условиях. Большинство экспериментов было прове­дено в полупроизводственных условиях. Поэтому трудно судить об экономической значимости процессов бактериального выще­лачивания и оценить технологические трудности, которые могут возникнуть при широкомасштабном промышленном использова­нии микробиологических процессов. Обычно применяемые про­цессы бактериального выщелачивания страдают также от не­достатка хорошей техники. Вполне вероятно, что создание спе­циальной системы оптимизации биологической активности силь­но расширило бы,использование бактерий при выщелачивании. К параметрам, которые должны при этом учитываться, отно­сятся температура, питательные вещества, содержание кисло­рода и углекислого газа, размер частиц, качество минерала, плотность пульпы (масса частиц на единицу объема выщела­чивающего раствора), скорость протекания выщелачивающего раствора и рН.

Превращение, накопление и иммобилизация металлов микроорганизмами
Биотехнологии » Материалы и биотехнология


Побуждаемая строгими законами об охране окружающей сре­ды, необходимостью извлечения ценных металлов и очистки промышленных вод для их повторного использования, горно­рудная промышленность все шире применяет новые физико-хи­мические технологии для очистки сточных вод. Слишком часто эти технологии оказываются крайне дорогостоящими и неэф­фективными. Все больше фирм приходят к убеждению, что для очистки сточных вод можно использовать биологические про­цессы, причем эти процессы могут быть более экономичными и эффективными, чем обычно применяемые методы. Некоторые промышленные предприятия широко используют эти процессы для удаления из рудничных сточных вод примесей неорганиче­ских ионов.

Перевод в летучую форму
Биотехнологии » Материалы и биотехнология


В настоящее время твердо установлено, что многие микроорга-лизмы способны метилировать ртуть. Это приводит к превра­щению ионов Hg(II) из осадка или раствора в метилртутные соединения (например, диметилртуть), которые уходят в атмо­сферу. Такое превращение может быть важным этапом в при­родном круговороте ртути. Возможно также микробиологиче­ское метилирование других металлов, например мышьяка, теллура и селена, которые таким способом удаляются из почвы и воды. Подобные процессы могут играть важную роль в при­родных циклах этих металлов и иметь значение, например, при образовании обедненных селеном почв или при удалении ток­сичных металлов при обработке сточных вод. Как бы то ни было биотехнологические исследования, направленные на умень­шение или увеличение подобной микробной активности, пред­ставляются весьма перспективными.

Внеклеточное осаждение
Биотехнологии » Материалы и биотехнология


Металлы могут иммобилизовываться и накапливаться в почвах и в осадочных породах за счет связывания с продуктами мета­болизма микробов или с накапливающимися органическими остатками. Эти процессы издавна использовались человеком при очистке сточных и промышленных вод. При обычной очистке сточных вод образующийся ил содержит целый набор ме­таллов, перешедших из воды. Живые клетки и органические остатки, присутствующие в отстойниках или проточных прудах, будут накапливать эти металлы, которые впоследствии оказы­ваются в осадках. Для удаления металлов из промышленных стоков или из рудничных вод в горнорудной промышленности используют пруды, в которых «цветут» водоросли (их усилен­ный рост стимулируется органическими или минеральными пи­тательными веществами, которые содержатся в воде).

Внеклеточное комплексообразование
Биотехнологии » Материалы и биотехнология


Некоторые микроорганизмы синтезируют специфические хими­ческие соединения, обладающие высоким сродством к опреде­ленным металлам. Наиболее известны соединения, образующие-комплексы с железом. Молибден, ванадий и другие микроэле­менты, участвующие в метаболизме бактерий, также способны поступать в клетку в форме внеклеточных комплексов. Хотя эти комплексообразующие соединения не осаждают металлы, на их основе может быть создана новая технология извлечения отдельных металлов из растворов.

Внутри- и внеклеточное накопление металлов микроорганизмами
Биотехнологии » Материалы и биотехнология


О прямом накоплении металлов микроорганизмами уже шла речь в предыдущих разделах. Теперь мы рассмотрим лежащие .в основе этого явления биохимические процессы и возможности их использования в прикладной микробиологии. Идея примене­ния микроорганизмов для извлечения металлов из растворов издавна представлялась привлекательной не только для очистки .воды, но и для получения ценных или экономически важных металлов. Возможность эксплуатации такого процесса концент­рирования несомненна, поскольку хорошо известна способность живых организмов извлекать металлы из разбавленных раство­ров и накапливать их. Многие растения и животные концентри­руют элементы из окружающей их среды в миллионы раз.

Поглощение некоторых металлов дрожжами и бактериями
Биотехнологии » Материалы и биотехнология


Микроорганизмы способны концентрировать металлы одним из следующих способов:
1) внеклеточное накопление участву­ющих или не участвующих в метаболизме металлов путем свя­зывания или осаждения их на клеточной стенке или мембранах;
2) внутриклеточное накопление нужных для метаболизма ме­таллов (например, К, Fe, Mg, Mo, следы Си, Ni);
3) внутри­клеточное накопление относительно больших количеств несу­щественных для метаболизма металлов (например, Со, Ni, Си, Cd, Ag) в основном с помощью механизмов, служащих для накопления существенных для метаболизма металлов.

Биополимеры
Биотехнологии » Материалы и биотехнология


Термин «биополимеры» относится ко многим высокомолекуляр­ным соединениям (например, к нуклеиновым кислотам, полиса­харидам и липидам), синтезируемым самыми разными организ­мами. В этом разделе мы особенно подробно рассмотрим обра­зование микроорганизмами полисахаридов и поли-3-гидрокси-бутирата. Эти биополимеры часто синтезируются в ответ на специфические условия среды в тех случаях, когда соединения углерода не являются фактором, лимитирующим рост, и, следо­вательно, могут служить резервным источником углерода и/или энергии.

Полисахариды
Биотехнологии » Материалы и биотехнология


Полисахариды служат источником энергии и структурными компонентами клеточных стенок и внеклеточных капсул. Мно­гие из этих полимеров, имеющие коммерческую ценность как промышленные клеи, были получены из растительных тканей (экстракты семян и морских водорослей, древесные экссудаты и т. п.). Способность таких полисахаридов изменять реологиче­ские свойства воды, вызывая образование геля и влияя на свойства водных растворов в потоке, привели к их широкому-промышленному использованию в самых различных ситуациях. Полисахаридные гидроколлоиды часто применяются в пищевой,, фармацевтической, парфюмерно-косметической, нефтяной, бу­мажной и текстильной промышленности. Например, из красных, водорослей производят в промышленных масштабах карраге-нан и агар, а из бурых — альгинаты. Однако получение полиса­харидов из растений и водорослей обладает своими недостат­ками.

Образование полисахаридов при брожении
Биотехнологии » Материалы и биотехнология


Для образования большого количества   полимера   требуется легкодоступный и дешевый источник  углерода.   Ферментация позволяет культивировать организм-продуцент в строго опреде­ленных условиях среды, контролируя, таким образом, процесс «биосинтеза и влияя на тип продукта и его свойства. Специфи­чески изменяя условия роста, можно менять   молекулярную массу и структуру образующегося полимера. В ряде случаев максимальная скорость синтеза полисахарида достигается    в логарифмической стадии роста, в других — в поздней логариф­мической или в начале стационарной.   Обычно   углеводными субстратами служат глюкоза и сахароза, хотя полисахариды могут образовываться и при росте микроорганизмов на н-алканах( C12-61), керосине, метаноле, метане, этаноле, глицероле и зтиленгликоле.

Микробные полисахариды: свойства, применение и коммерческая ценность
Биотехнологии » Материалы и биотехнология


Ксантан   [келтрол   (Keltrol),   келзан   (Kelzan),   Родогель (Rhodogel)]
Ксантан синтезируется Xanthomonas campestris при росте на глюкозе, сахарозе, крахмале, кукурузной декстрозе и барде. В качестве источников углерода могут использоваться промыш­ленные отходы, например сыворотка, образующаяся при выра­ботке творога. Этот полимер, имеющий аллюлозный остов, по­строен из повторяющихся пятичленных блоков, содержащих D-глюкозу, D-маннозу, D-глюкуроновую кислоту; к некоторым из них присоединены остатки уксусной и пировиноградной кислот. Мол. масса его варьирует от 2-106 до 15-106.

Декстран
Биотехнологии » Материалы и биотехнология


Декстран— это α-D-глюкан, синтезируемый самыми разными грамположительными и грамотрицательными бактериями, та­кими как Aerobacter spp., Streptococcus bovis и S. viridans, а также Leuconostoc mesenteroides. В промышленности этот полимер получают выращиванием последнего из перечисленных микроорганизмов на сахарозе. Большинство полисахаридов яв­ляются продуктами внутриклеточного синтеза, однако при об­разовании декстрана субстрат не проникает в клетку. Декстраны классифицируют в зависимости от относительного содержа­ния каждого из трех имеющихся типов связей (α-1->3, α-1->4 и α-1->6), а также по растворимости в воде. Высокомо­лекулярный полимер осаждают органическими растворителями, л затем разрушают ферментативным путем (используя экзо-и эндодекстраназы) с помощью гидролиза слабой кислотой либо нагреванием до получения продукта с нужной молекуляр­ной массой.

ООО "ВиАТорг" © 2009
Rambler's Top100 Рейтинг@Mail.ru