О КОМПАНИИ
ООО "ВиАТорг"
г. Белгород
ПРОДУКЦИЯ
Cосуды Дьюара криобиологические
КОНТАКТЫ
Связь с нами

ПРОДУКЦИЯ
Cосуды криобиологические (Сосуды Дьюара)



КОНТАКТЫ
ООО "ВиАТорг", г. Белгород
Компания "ВиАТорг" официальный представитель Харьковского завода транспортного оборудования в России поставляет криобиологические сосуды (Сосуды Дьюара) по России и странам СНГ.
У нас Вы можете купить Сосуды Дьюара недорого

E-mail:viatorg@yandex.ru

СТАТЬИ
Биотехнологии, принципы и применение


Партнеры
Объявления


Популярное
Интересные факты криобиологии
Извлечение полезных веществ
Одна из главных задач технологии, связанной с окружающей средой, — это сохранение природных ресурсов путем повторно­го использования полезных веществ, содержащихся в отходах. Некоторые разработк ...

Прикладные аспекты генетической инженерии
Не вызывает сомнения, что методы генетической инженерии бу­дут играть ведущую роль в развитии биотехнологии и найдут в ней самое широкое применение. Уже сегодня с помощью бак­терий и дрожжей мы получа ...

Биологический катализ в неводных средах
Известно, что биологический катализ осуществляется в природе в водной среде, но сфера применения ферментов в биотехнологии не может ограничиваться только этими условиями. Нередко нужно подвергнуть изм ...

Слияние протопластов
С целью преодоления преград для генетического обмена, су­ществующих в обычных системах скрещивания, был разработан метод слияния протопластов (клеток с удаленными клеточны­ми оболочками). Этот метод п ...

ЛИТЕРАТУРА
Микробное выщелачивание Brierley С. L. (1978). Bacterial leaching, Grit. Rev. Microbiol., 6, 207—262. Brierley C. L. (1982). Microbiological mining, Scient. Am., 247, 42—51 Fenchel Т., Bla ...

Курдлан
Курдлан —это а-1,3-глюкан, синтезируемый Alcaligenes faecalis, var. myxogenes, штамм 10СЗ. При нагревании до темпера­туры выше 54 °С происходит необратимое гелеобразование это­го полимера; прочн ...

Правила техники безопасности в биотехнологической промышленности и контроль ...
Как известно, существуют стандарты безопасности новых видов продукции. К числу наиболее строгих из них относятся те, ко­торые касаются медицинских препаратов,   а также продуктов, потребляемых в живот ...

Развитие биотехнологической промышленности после второй мировой войны
Помимо постоянного усовершенствования процессов, о которых речь шла ранее, в последние сорок лет был разработан ряд новых; некоторые из них перечислены в табл. 1.2. Мы обратим­ся к этим процессам в по ...

Две разновидности биотехнологии
Если рассмотреть, чем занимается сегодня биотехнология, то нетрудно убедиться, что существуют две ее разновидности, раз­личающиеся по ценности получаемых продуктов и по масштабу их производства. Разли ...

Инженерия белка
Белковая инженерия может быть основана на химической мо­дификации готового белка или на методах генетической инже­нерии, позволяющих получать модифицированные варианты природных белков.

Биотехнология на основе растительных клеток
Растения издавна являются поставщиками химических соедине­ний для самых разных отраслей химической промышленности. Это не только такое сырье, как сахара, но и целый набор слож­ных вторичных метаболито ...

Ферменты
Ферменты составляют основу многих тестов, используемых в клинической медицине. Они все чаще применяются при авто­матизированном анализе и биохимическом скрининге жидко­стей тела, которые ведутся в био ...

Окружающая среда
По мере того как увеличивается население Земли и развивает­ся промышленность, все более серьезной становится проблема охраны окружающей среды. В решении такого рода задач био­технология будет играть в ...

Внеклеточное осаждение
Металлы могут иммобилизовываться и накапливаться в почвах и в осадочных породах за счет связывания с продуктами мета­болизма микробов или с накапливающимися органическими остатками. Эти процессы издав ...

Исторические перспективы
До тех пор, пока всеобъемлющий термин «биотехнология» не стал общепринятым, для обозначения наиболее тесно связанных с биологией разнообразных технологий использовали такие на­звания, как прикладная м ...

Применение микроорганизмов для экстракции металлов из минералов
Вероятно, из всех аспектов микробиологической технологии меньше всего рекламируется и больше всего недооценивается применение микроорганизмов для экстракции металлов из минералов, для концентрирования ...

Принцип «псевдоожиженного слоя»
Данная технология, введенная в практику в 1980 г., во многих отношениях представляет собой сочетание систем перколяци-онных фильтров и активного ила. Она весьма экономична бла­годаря использованию выс ...

Биоповреждение материалов
Термин «биоповреждение» вошел в наш язык лишь в послед­нее время, но обозначаемые им процессы известны человеку издавна, с тех пор, как он начал перерабатывать природное сырье и заботиться о сохраннос ...

Энергетика
В ходе эволюции в биологических системах сформировался ряд весьма совершенных механизмов превращения энергии. На рис. 1.3 представлены основные известные их типы, часть которы хиспользуется разными сп ...

Парасексуальный цикл у грибов
Многие мицелиальные формы грибов, применяющиеся в прот мьйиленности, не имеют истинного полового цикла, во времж которого можно было бы провести скрещивание с целью кон­струирования более продуктивных ...


Поглощение некоторых металлов дрожжами и бактериями
Биотехнологии » Материалы и биотехнология


Микроорганизмы способны концентрировать металлы одним из следующих способов:
1) внеклеточное накопление участву­ющих или не участвующих в метаболизме металлов путем свя­зывания или осаждения их на клеточной стенке или мембранах;
2) внутриклеточное накопление нужных для метаболизма ме­таллов (например, К, Fe, Mg, Mo, следы Си, Ni);
3) внутри­клеточное накопление относительно больших количеств несу­щественных для метаболизма металлов (например, Со, Ni, Си, Cd, Ag) в основном с помощью механизмов, служащих для накопления существенных для метаболизма металлов.

Биополимеры
Биотехнологии » Материалы и биотехнология


Термин «биополимеры» относится ко многим высокомолекуляр­ным соединениям (например, к нуклеиновым кислотам, полиса­харидам и липидам), синтезируемым самыми разными организ­мами. В этом разделе мы особенно подробно рассмотрим обра­зование микроорганизмами полисахаридов и поли-3-гидрокси-бутирата. Эти биополимеры часто синтезируются в ответ на специфические условия среды в тех случаях, когда соединения углерода не являются фактором, лимитирующим рост, и, следо­вательно, могут служить резервным источником углерода и/или энергии.

Полисахариды
Биотехнологии » Материалы и биотехнология


Полисахариды служат источником энергии и структурными компонентами клеточных стенок и внеклеточных капсул. Мно­гие из этих полимеров, имеющие коммерческую ценность как промышленные клеи, были получены из растительных тканей (экстракты семян и морских водорослей, древесные экссудаты и т. п.). Способность таких полисахаридов изменять реологиче­ские свойства воды, вызывая образование геля и влияя на свойства водных растворов в потоке, привели к их широкому-промышленному использованию в самых различных ситуациях. Полисахаридные гидроколлоиды часто применяются в пищевой,, фармацевтической, парфюмерно-косметической, нефтяной, бу­мажной и текстильной промышленности. Например, из красных, водорослей производят в промышленных масштабах карраге-нан и агар, а из бурых — альгинаты. Однако получение полиса­харидов из растений и водорослей обладает своими недостат­ками.

Образование полисахаридов при брожении
Биотехнологии » Материалы и биотехнология


Для образования большого количества   полимера   требуется легкодоступный и дешевый источник  углерода.   Ферментация позволяет культивировать организм-продуцент в строго опреде­ленных условиях среды, контролируя, таким образом, процесс «биосинтеза и влияя на тип продукта и его свойства. Специфи­чески изменяя условия роста, можно менять   молекулярную массу и структуру образующегося полимера. В ряде случаев максимальная скорость синтеза полисахарида достигается    в логарифмической стадии роста, в других — в поздней логариф­мической или в начале стационарной.   Обычно   углеводными субстратами служат глюкоза и сахароза, хотя полисахариды могут образовываться и при росте микроорганизмов на н-алканах( C12-61), керосине, метаноле, метане, этаноле, глицероле и зтиленгликоле.

Микробные полисахариды: свойства, применение и коммерческая ценность
Биотехнологии » Материалы и биотехнология


Ксантан   [келтрол   (Keltrol),   келзан   (Kelzan),   Родогель (Rhodogel)]
Ксантан синтезируется Xanthomonas campestris при росте на глюкозе, сахарозе, крахмале, кукурузной декстрозе и барде. В качестве источников углерода могут использоваться промыш­ленные отходы, например сыворотка, образующаяся при выра­ботке творога. Этот полимер, имеющий аллюлозный остов, по­строен из повторяющихся пятичленных блоков, содержащих D-глюкозу, D-маннозу, D-глюкуроновую кислоту; к некоторым из них присоединены остатки уксусной и пировиноградной кислот. Мол. масса его варьирует от 2-106 до 15-106.

Декстран
Биотехнологии » Материалы и биотехнология


Декстран— это α-D-глюкан, синтезируемый самыми разными грамположительными и грамотрицательными бактериями, та­кими как Aerobacter spp., Streptococcus bovis и S. viridans, а также Leuconostoc mesenteroides. В промышленности этот полимер получают выращиванием последнего из перечисленных микроорганизмов на сахарозе. Большинство полисахаридов яв­ляются продуктами внутриклеточного синтеза, однако при об­разовании декстрана субстрат не проникает в клетку. Декстраны классифицируют в зависимости от относительного содержа­ния каждого из трех имеющихся типов связей (α-1->3, α-1->4 и α-1->6), а также по растворимости в воде. Высокомо­лекулярный полимер осаждают органическими растворителями, л затем разрушают ферментативным путем (используя экзо-и эндодекстраназы) с помощью гидролиза слабой кислотой либо нагреванием до получения продукта с нужной молекуляр­ной массой.

Микробный альгинат
Биотехнологии » Материалы и биотехнология


Источником альгинатов издавна служили морские водоросли (например, Laminaria spp.), однако по природе своей этот ис­точник непостоянен. Среди бактерий близкие к альгинату гете-рополисахариды образуют из D-маннуроновой и L-глюкуроно-вой кислот Pseudomonas aeruginosa и Azotobacter vinelandii. Этот процесс осуществляют в промышленном масштабе, выра­щивая Azotobacter в условиях избытка углерода. Микробный альгинат отличается от соответствующего продукта из водорос­лей наличием О-ацетильных групп, связанных с остатками D-маннуроновой кислоты.

Геллановая камедь
Биотехнологии » Материалы и биотехнология


Геллан — полисахарид, состоящий из остатков глюкозы, рамнозы, глюкуроновой кислоты и содержащий О-ацетильные группы (3—4,5%), — получают методом аэробной ферментации при участии Pseudomonas elodea ATCC 31461 на каком-либо угле­водном источнике углерода. Этот продукт существует в трех формах: нативной, низкоацетильной и низкоацетильной/освет­ленной. Низкоацетильная форма, легко получаемая из натив­ной нагреванием при рН10, образует при нагревании и охлаж­дении твердые хрупкие гели. Прочность геля зависит от кон­центрации камеди и солей, а также от природы присутствующих катионов.

Занфло (Zanflo)
Биотехнологии » Материалы и биотехнология


Полисахарид занфло, получаемый из Erwinia tahitica, облада­ет сходными с ксантаном свойствами; единственное отличие со­стоит в том, что его вязкость претерпевает обратимые термиче­ские изменения (при температуре выше 60 °С). Этот полисаха­рид, растворы которого обладают высокой вязкостью, состоит из остатков фукозы, галактозы, глюкозы и уроновой кислоты и содержит некоторое количество этерифицированных О-ацетильных групп.

Политран (склероглюкан)
Биотехнологии » Материалы и биотехнология


Политран представляет собой линейный β-1,3-глюкан, выделяе­мый грибом Sclerotium glucanicum и близкими к нему видами при выращивании в глубинной культуре на среде с кукурузным экстрактом. К каждому третьему остатку в цепи связью β-1->6 присоединена одна D-глюкопиранозильная группа. Политран обладает псевдопластическими свойствами в широком диапазо­не рН и температуры и нечувствителен к различным солям. Его применяют для стабилизации бентонитовых шламов при бурении и для повышения нефтедобычи; он используется также в керамических глазурях, латексных и типографских красках и при дражировании семян. Этот нейтральный полисахарид разрушается экзоглюканазами до глюкозы и гентобиозы.

Микробные полисахариды, синтезируемые Alcatigenes spp.
Биотехнологии » Материалы и биотехнология


Компанией Kelco в США за последнее время доведено до про­мышленных масштабов получение нескольких полисахаридов ери участии различных видов Alcaligenes.
В глубинных культурах образуется с большим выходом по­лимер S130 неизвестной структуры. Он обладает высокой вяз­костью при низкой концентрации, прекрасной растворимостью, большой вязкостью в морской воде и в солевых растворах и не утрачивает этих свойств при высоких температурах (~149°С). Большинство растворов полисахаридов теряют свою вязкость три температурах свыше 93 °С, а вязкость растворов полимера S130 при 149 °С остается такой же, как при комнатной темпе­ратуре. Кроме того, при таких высоких температурах он не разрушается в течение длительного времени, особенно в при­сутствии малых количеств кислорода.

Курдлан
Биотехнологии » Материалы и биотехнология


Курдлан —это а-1,3-глюкан, синтезируемый Alcaligenes faecalis, var. myxogenes, штамм 10СЗ. При нагревании до темпера­туры выше 54 °С происходит необратимое гелеобразование это­го полимера; прочность геля зависит от температуры: она по­стоянна в интервале 60—80°С и возрастает в интервале 80— 100 °С. При температуре выше 120 °С молекулярная структура этого полисахарида изменяется: одиночная спираль переходит в тройную. Курдлан нерастворим в холодной воде, и его гели можно получать также путем диализа щелочных растворов против воды. Этот полисахарид может найти применение в ка­честве гелеобразователя в кулинарии, он может использоваться как молекулярное сито, как подложка при иммобилизации фер­ментов и как связующий агент.

Пуллулан
Биотехнологии » Материалы и биотехнология


Пуллулан представляет собой a-D-глюкановый полисахарид, состоящий из а-1->6-мальтотриозных и небольшого числа мальтотетраозных единиц. Он синтезируется Aureobacidium pullulans и образует прочные, упругие пленки и волокна, которые можно формовать. По сравнению с целлофаном и полипропиленом эти пленки мало проницаемы для кислорода. Пуллулан, возможно, найдет применение в качестве упаковочного материала или флюккулирующего агента в суспензиях глин в горной промыш­ленности. Он устойчив к амилазам, но разрушается ферментом пуллуланазой.
 

Биосинтез полисахаридов
Биотехнологии » Материалы и биотехнология


Хотя у некоторых бактерий синтез полисахаридов (например, декстранов) осуществляется вне клетки, в большинстве случа­ев полисахариды синтезируются внутри нее, а для этого необ­ходимо, чтобы соответствующий субстрат проник через клеточ­ную мембрану. Почти во всех работах, касающихся биосинтеза полисахаридов, изучались организмы, имеющие небольшое про­мышленное значение или не имеющие его вовсе. Эти результа­ты можно, видимо, экстраполировать и на промышленные организмы.
Поглощение субстрата осуществляется путем облегченной диффузии, активного транспорта (при этом субстрат проникает в клетку в неизмененном состоянии) или групповой транслока­ции (при этом субстрат подвергается фосфорилированию). Скорость синтеза полисахарида, по-видимому, зависит от ско­рости поступления субстрата, которая, таким образом, может быть первым из факторов, лимитирующих синтез полисахари­да. В то же время скорость конверсии углерода обычно очень высока, поэтому онь, видимо, не может быть фактором, лими­тирующим синтез. Специфические потребности в углероде для образования полисахарида иногда связаны со специфическими механизмами поглощения субстрата.

Подходы к усовершенствованию производства микробных полисахаридов
Биотехнологии » Материалы и биотехнология


Использование микроорганизмов для получения промышленно ценных полисахаридов можно сделать более эффективным с помощью следующих усовершенствований:
1) увеличения ско­рости образования полисахаридов и повышения их выхода;
2) модификации получаемых полисахаридов;
3) изменения по­верхностных свойств микроорганизмов-продуцентов для об­легчения отделения клеток на последующих этапах переработ­ки;
4) устранения ферментативных активностей, способных вы­звать нежелательные модификации полисахаридов;
5) переноса генетических детерминант синтеза полисахаридов в технологи­чески более удобные организмы-продуценты.

Поли-β-гидроксибутират
Биотехнологии » Материалы и биотехнология


Поли-β-гидроксибутират (ПГБ) — это термопластичный по­лиэфир, состоящий из повторяющихся блоков —СН (СН3)—СН2—СО—О— и, как было установлено более 50 лет назад, являющийся резервным энергозапасающим со­единением. Он накапливается самыми разнообразными микро­организмами (например, видами Alcaligenes, Azotobacter, Ba­cillus, Nocardia, Pseudomonas и Rhizobium). В некоторых ус­ловиях отдельные виды, в частности Alcaligenes eutrophus и Azo­tobacter beijerinckii, способны аккумулировать этот полимерный материал в таком количестве, что он составляет до 70% их су­хой массы.

Другие полимеры, образуемые микроорганизмами
Биотехнологии » Материалы и биотехнология


Все описанные до сих пор биополимеры полностью синтезиру­ются определенными микроорганизмами в процессе роста на том или ином источнике углерода. Существуют и иные способы получения новых полимерных материалов, предусматривающие использование микроорганизма лишь на отдельных этапах син­теза. При этом микроорганизм служит только микробиологиче­ским катализатором для проведения химического превращения, которое в иных условиях затруднено. Речь идет о биотехнологическом процес­се, предложенном для получения нового полимера, полифенилена, который представляет интерес для специалистов по материаловедению благодаря своей термостабильности и высо­кой электропроводности.

Биоповреждение материалов
Биотехнологии » Материалы и биотехнология


Термин «биоповреждение» вошел в наш язык лишь в послед­нее время, но обозначаемые им процессы известны человеку издавна, с тех пор, как он начал перерабатывать природное сырье и заботиться о сохранности пищевых продуктов. Орга­низмы, ответственные за процессы биоповреждения, сопровож­дали нас и в еще более отдаленном прошлом, будучи сущест­венным звеном в круговороте элементов биосферы. Человек ра­но осознал необходимость защиты сырья и пищевых продуктов от возвращения их в этот круговорот и стал использовать для замедления жизнедеятельности микроорганизмов консервирова­ние или другие защитные способы. Консервирование как эмпи­рический процесс существует несколько тысячелетий, и имеется множество описаний его использования.

Определение биоповреждений
Биотехнологии » Материалы и биотехнология


Под биоповреждением понимают «любое нежелательное изме­нение свойств какого-либо материала, вызванное жизнедея­тельностью различных организмов». В широком смысле это процесс, приводящий к уменьшению ценности любого матери­ала. При этом имеются в виду те свойства данного материала, которые обусловливают его использование в определенных це­лях. По своей природе эти изменения могут быть механически­ми, физическими или касаться эстетических свойств материала и не обязательно приводят к его химическому разрушению. Последний момент важен для определения различий между биоповреждением и биоразложением (биодеградацией). «Био­повреждение» — термин более широкий, «биоразложение» — ограниченный, относящийся только к разрушению какого-либо продукта (часто сырья), попавшего в окружающую среду (на­пример, нефтепродуктов, пестицидов или детергентов).

Классификация процессов биоповреждения
Биотехнологии » Материалы и биотехнология


Использование термина «материалы» в определении биопов­реждений означает, что речь идет о «неживом», в отличие от патологии, изучающей различные нежелательные процессы в живой материи. Различия эти зачастую очень тонки, иногда наблюдается перекрывание в том смысле, что организмы, об­наруживаемые в живой материи или органических остатках, сохраняют свою жизнедеятельность и в неживой материи,, уменьшая ценность данного продукта в процессе хранения. Однако во многих случаях со смертью организма-хозяина из­меняются условия питания и клеточные компоненты, что при­водит к изменению и типа организма, «колонизирующего» дан­ный материал.

ООО "ВиАТорг" © 2009
Rambler's Top100 Рейтинг@Mail.ru